
Scala:  
The Industrial Parts
Marius Eriksen (@marius, marius@twitter.com) 
Scala Symposium, June 13, 2015



Agenda

Setting, scale 

How we use Scala (distilled) 

The pitfalls of Scala 

Taming Scala 



Setting, scale

Twitter is a large organization. 
• O(103) developers

• O(108) users

• O(107) lines of code

• O(104) opinions

• 5+ cafeterias



Engineering
Engineers come from different experience levels. 
• Many new grads; junior engineers

• Many senior engineers without FP background

• Many disciplines: mobile, web, machine learning, 

OS, HPC, systems, runtimes, etc.


Monolithic repository 
• Everything is built, deployed from source.


Large degree of consistency 
• Consistent set of systems and libraries



Computing environment

Our target is the datacenter. 

Thus our focus on efficiency, performance, 
correctness, resilience, and safety are viewed 
through this lens. 

This in turn informs how we use our tools and 
languages.



Design space

Functionality 	 	 It has to work


Scalability		 	 	 It must be growable 

Operability	 	 	 It must be diagnosable, fixable 

Efficiency 		 	 	 It must be cheap 

Flexibility	 	 	 	 It must be changeable



STORAGE & 
RETRIEVAL

LOGICPRESENTATIONROUTING

Redis

Memcache

Flock

T-Bird

MySQLTweet

User

Timeline

Social 
Graph

DMs

API

Web

Monorail

TFE

HTTP Thrift “Stuff”



Caveat emptor

This talk is about the use of Scala in our setting. It is 
highly distilled. 

It may not apply to your own use; or maybe any 
other use at all. 

(But I’d like to think that it generalizes.)



Your server as a function

Services 
• Highly concurrent

• Complicated operating environment: asynchronous 

networks, partial failures, noisy neighbors

• Needs to support many protocols (e.g., Mux, HTTP, 

Thrift, memcached, MySQL, redis..)


“Concurrent programs wait faster”—Hoare



Futures

// A container for a future T-typed 
// value. May fail or never complete 
// at all. 
val f: Future[T]



Futures
More than ersatz threads: Future-based 
concurrency has great impedance matching in 
distributed systems 
• Asynchronous

• Future typing is good 
• Composable results/errors

• Persistent, easy to reason with

• Liberate semantics from mechanics 

The basis for (nearly) all concurrency at Twitter.



Futures
Engineers are familiar and comfortable with 
collections 

Futures give them access to concurrent 
programming through the same, natural APIs 

Without the need to deal with the minutiae and 
book-keeping of dealing with threads as resources 

This has been huge



Services

Services are asynchronous functions, used to 
represent real services 

trait Service[Req, Rep] 
    extends (Req => Future[Rep]) 

val http:   Service[HttpReq, HttpRep] 
val redis:  Service[RedisCmd, RedisRep] 
val thrift: Service[TFrame, TFrame]



Services are symmetric
// Client: 
val http = Http.newService(..) 
 
// Server: 
Http.serve(.., 
  new Service[HttpReq, HttpRep] { 
    def apply(..) = .. 
  } 
) 

// A proxy: 
Http.serve(.., Http.newService(..))



Filters
A Service talks about an application; a Filter 
talks about application-agnostic behaviors, e.g., 
• Timeouts

• Retries

• Statistics

• Logging

• Authentication


Composes Services



Filters

trait Filter[ 
  ReqIn, ReqOut,  
  RepIn, RepOut] 
extends  
  ((ReqIn, Service[ReqOut, RepIn]) 
    => Future[RepOut]) 

In other words, given a request and a service, a 
filter produces a response



Timeout filter

class TimeoutFilter[Req, Rep]( 
  to: Duration) 
extends Filter[Req, Rep, Req, Rep] { 
 
  def apply( 
    req: Req,  
    svc: Service[Req, Rep]) =  
  svc(req).within(to) 
}



Filters & services
val timeout =  
  new TimeoutFilter(1.second) 
val auth = new AuthFilter 

val authAndTimeout: Filter[..] =  
  auth andThen timeout 

val service: Service[..] = .. 

val authAndTimeoutService = 
  authAndTimeout andThen service



In the real world
recordHandletime     andThen 
traceRequest         andThen 
collectJvmStats      andThen 
parseRequest         andThen 
logRequest           andThen 
recordClientStats    andThen 
sanitize             andThen 
respondToHealthCheck andThen 
applyTrafficControl  andThen 
virtualHostServer



A systems basis
Futures, services, and filters are the orthogonal basis 
upon which our service software is written 
• Easy to answer what functionality belongs where.


The style of programming encourages good modularity, 
separation of concerns. 
• Enhanced flexibility. 

• Piecemeal composition.  


Most of our systems are phrased as big future 
transformers. 
• Simple to reason about.





Stitch
Service-oriented programming 
• Want concurrency between calls

• Want to be efficient by taking advantage of batch 

APIs (e.g., fetch every tweet in a timeline)

• Want clear, flexible, modular code


This often leads to spaghetti code that mixes 
operational concerns—e.g., batching—with 
application code.



A typical batch API
sealed trait Req 
case class ReqA(...) extends Req 
case class ReqB(...) extends Req 
 
sealed trait Resp 
case class RespA(...) extends Resp 
case class RespB(...) extends Resp 
 
def call(reqs: Seq[Req]) 
  : Future[Seq[Resp]] 



Typical use

val reqs = ... // mix of Req{A,B}s 
val resps = call(reqs) // mix of 
Resp{A,B}s 
 
reqs.zip(resps).map { 
  case (ReqA(...), RespA(...)) => ... 
  case (ReqB(...), RespB(...)) => ... 
  case _ => // can’t happen 
}



Stitch

def call(req: ReqA): Stitch[RespA] 
def call(req: ReqB): Stitch[RespB] 
 
Stitch.join( 
  call(reqA) map { respA => ... 
  call(reqB) map { respB => ... 
)



Stitch is a monad
trait Stitch[T] { 
  def map[U](f: T => U): Stitch[U] 
  def flatMap[U](f: T => Stitch[U]) 
    : Stitch[U] 
  def handle[T](f: Throwable => T) 
    : Stitch[T] 
  def rescue[T](f: Throwable => 
Stitch[T]) 
    : Stitch[T] 
  … 
}



Stitch is a monad
object Stitch { 
  def value[T](t: T): Stitch[T] 
  def join[A,B]( 
    a: Stitch[A], b: Stitch[B]) 
    : Stitch[(A, B)] 
  def collect[T](ss: Seq[Stitch[T]]) 
    : Stitch[Seq[T]] 
  def traverse[T, U](ts: Seq[T]) 
    (f: T => Stitch[U]): Stitch[Seq[U]] 
  def run[T](s: Stitch[T]): Future[T] 
}



Service adaptors

case object CallGroup  
    extends SeqGroup[Req, Resp] { 
  def run(calls: Seq[Req]) = 
    service.call(calls) 
}  
 
Stitch.call(req, CallGroup) 
  : Stitch[Resp]



Execution model
A query is represented as a syntax tree. 

When called, we find exposed calls. 

Can “see” into join, traverse, map but not flatMap 
(data dependency). 

Group calls together, execute batch RPCs. 

On each RPC return, simplify query, repeat.



Stitch

Separation of concerns 
• Batching/query plan vs. application logic


Composition 
• Queries are combined, and made more efficient for 

it!



Other interesting uses

• DSLs for data processing — Scalding

• Online/offline/nearline unification — Summingbird

• Raw comparator generators via macros

• Software stacks as first class values

• Self-adjusting computation 



Where 
Scala is 
Complex 
(In practice)



Scala’s complexities
In practice, Scala is quite large and complex. 
• While the language itself is reasonably orthogonal, 

interactions are quite tricky.

• This is multiplied by interactions with Java, the 

JVM, Java’s object model, syntax sugar, inference, 
…


You can do many powerful things with Scala; but is 
the cost justified in our setting?



Ingredients
Type system; classes, traits, type classes, structural 
types, abstract types, …; Java interoperability; cost 
of abstraction; syntax sugar; interaction between 
features; boxing; variance; existentials; uppercase 
constants, matching; initialization order; implicit 
resolution; closure capture; lazy initialization; 
return-as-exception; nullary methods vs (); call-by-
name; …  

(Some ingredients don’t mix well.)



Sharp corners
A few 
sharp corners



Underscore literals

Don’t always do what you expect them to. 

future.map { 
  count.incrementAndGet() 
  process(_) 
}



Underscore literals (2)

“Weird” type checking errors. 

keys.map { (A(_), b) }



Uppercase vals

val X = 123 
val x = 333 
val seq: Seq[Int] = ...  
 
seq match { 
  case Seq(X) => "X" 
  case Seq(x) => "x" 
  case _ => "unknown" 
}



Initialization order, vals
Oldie-but-goodie. Still bites people a lot. 

trait Client { 
  val connection: Connection 
}  
 
trait EnrichedClient { self: Client => 
  val rich = Enrich(connection) 
}  
 
new Client with EnrichedClient { 
  val connection = new TcpConnection 
}



Lazy val deadlocks

object Y { 
  lazy val x = X.x 
}  
 
object X { 
  lazy val x = 1 
  lazy val y = Y.x 
}



(Accidental) structured 
types

val client = new { 
  def connect(): Unit = … 
  … 
} 

vs. 

object client { 
  def connect(): Unit = … 
}



Collections

Scala’s collections are extremely powerful. Most 
problems can be dispatched with a few lines of 
carefully chosen combinators. 

“Easy to use: A small vocabulary of 20-50 methods 
is enough to solve most collection problems in a 
couple of operations.” —Scala docs



Magic
But: no-one understands how they work: there is an 
excess of “magic.” 
• Performance semantics/issues; difficult to debug.

• Often difficult to reason about — what is a Seq?


Can often lead to, or even encourage, cryptic code. 
• Code is read more than it is written.


Difficult to reason about locality.



flatMap

Try to get a non-expert to understand this signature. 
(Which is simple by collections standards.) 

def flatMap[B, That](f: A => 
GenTraversableOnce[B])(implicit bf: 
CanBuildFrom[Repr, B, That]): That



breakOut
val elems: Seq[Elem] 
val map: Map[Key, Value] = 
  elems.map { elem =>  
    (elem.key, elem.value) 
  } .toMap 

Avoid creating intermediaries: 

import collection.breakOut 
val map: Map[Key, Value] = 
  elems.map { elem =>  
    (elem.key, elem.value) 
  }(breakOut)



DRY at all costs

Collections complicated things relatively simple; but 
usually you just don’t want to do complicated 
things, but rather simple things in a predictable 
way. 

Scala’s collections make the wrong tradeoffs here. 
The details of a DRY implementation leak to the UX, 
cost model, and predictability.



Performance vs. 
correctness



Performance/correctness

How easy to reason about correctness

H
ow

 e
as

y 
to

 re
as

on
 a

bo
ut

 p
er

fo
rm

an
ce

Scala

C

Java



Performance/correctness
def distinct: Repr = { 
  val b = newBuilder 
  val seen = mutable.HashSet[A]() 
  for (x <- this) { 
    if (!seen(x)) { 
      b += x 
      seen += x 
    } 
  } 
  b.result() 
}



Innocuous-seeming code…

def process(seq: Seq[Int]): Unit = { 
  for (i <- seq if i < 10)  
    return 
 
  … 
}



All of the layers
You have to understand a large number of layers to 
understand Scala’s performance characteristics. 
• Syntax sugar

• Compiler frontend

• Java object model mapping

• Compiler back-end

• Java runtime model


And all of their interactions.



Tooling

In many ways, language tooling is more important 
than the language itself; e.g., 
• profilers

• IDEs

• formatting, linting

• source code formatting

• upgrading



Runtime tooling 
Scala inherits much of Java’s runtime tooling, but we all know these: 

at Main$$anon$1$Foo$$anonfun$bar$2.apply(frame.scala:6) 
at Main$$anon$1$Foo$$anonfun$bar$2.apply(frame.scala:5) 
at scala.collection.TraversableLike$$anonfun$map
$1.apply(TraversableLike.scala:244) 
at scala.collection.TraversableLike$$anonfun$map
$1.apply(TraversableLike.scala:244) 
at scala.collection.immutable.List.foreach(List.scala:
318) 
at scala.collection.TraversableLike
$class.map(TraversableLike.scala:244) 
at 
scala.collection.AbstractTraversable.map(Traversable.sc
ala:105)



Compilation speed



Compilation speed

One of the most frequent complaints among 
newcomers and old-timers alike. 

Speed is one of the most important features. Scala 
doesn’t really provide it. 

Standard arguments aren’t convincing to most.



Refactoring

Large-scale refactoring is difficult with Scala. 

Example: a simple transformation required a 
custom compiler plugin to be built: 

   future.get -> Await.result(future) 

Tools can be hugely beneficial in our setting.



O*pin"ion*a`ted (?), a. Stiff in opinion; firmly or 
unduly adhering to one's own opinion or to 
preconceived notions; obstinate in opinion.  Sir W. 
Scott.



Why is it important?

Instant familiarity. 
• Consistent, predictable, and simple code.


Much of modern software engineering involves 
spelunking into code quickly; familiarizing yourself. 
• Consistency breeds familiarity.



Scala is unopinionated
By its very nature, Scala is a rather unopinionated 
language. 
• Many ways to do any one thing


Scala offers a buffet of abstraction. 
• Newcomers are bewildered; experts spend a lot of 

time picking tools. 
• Unnecessary effort.


With great power comes great responsibility. 
• Is it possible to have both?



Scala’s buffet of abstraction

Even simple problems in Scala requires you to 
answer many questions. 

For example, which tool of abstraction should you 
reach for? 
• Traits + mix-ins?

• Classes + hierarchy?

• Type classes?

• “ML style” modules + syntax?



Taming 
Scala



Taming Scala

How do we make the best use out of such a 
powerful language in our setting? 
• Large scale organization

• Mix of experience levels

• Efficiency is paramount


Our view is utilitarian: we want wield Scala as a 
useful tool; it’s a means to an end.



Usage

Internal style guide, 
focused mainly on the 
semantic level. 

Formatting is important but 
we mostly adhere to the 
official recommendations.



Effective Scala



Usage
Restrict feature set, e.g., 
• no structural types;

• prefer eta-expansion of methods;

• limited function literal syntax;

• composition over inheritance;

• limit “scalaz-style” programming;

• use common libraries and frameworks;

• no/limited DSLs;

• etc.



Culture
This is extremely important. 
• Nobody can tell engineers what to do, but we can 

establish a culture and technical tradition.


Build teams — “infect” them. 
• Don’t let splinter teams/cultures/traditions evolve.


Not entirely successful at Twitter: 
• Runtime systems, analytics systems, frontend 

systems.



Be helpful
We always try to be available to: 
• answer “how to” questions;

• resolve usage concerns;

• discuss usage questions; and

• just discuss Scala generally.


Multiple forums: 
• HipChat

• Google group/mailing list

• Code reviews

• Tech talks



Teach
New hire orientation 

Scala, and related classes: 
• Beginning Scala

• Finagle; concurrency

• Advanced Scala Type System

• Functional programming in Scala

• Performant Scala


Tech talks



Tooling

Large-scale refactoring 
• One-off compiler plugins


IntelliJ project generation 

Build artifact caching 

Intelligent CI



Build hygiene

Much of the build pain is, in a sense, self-inflicted: 
“Doctor it hurts when I do this.” 

Make building easier: Use fine-grained packages 
without circular dependencies. 

Maybe we can even “seal” packages?



Closing 
Thoughts





Scala is fancy, expressive

Scala is a fancy, expressive language. You can 
easily do fancy, very expressive things in it. 
• It’s a very useful tool; but it’s also a very sharp one.

• Most of the time, we’re better off using a small 

subset of the language.

• Don’t bring a nuclear weapon to a knife fight.



On brevity

Brevity is a double-edged sword. Used correctly, it 
can enhance clarity; used badly, it can serve to 
obscure. 

With Scala, we’re constantly tempted by power, and 
we too often succumb to it. 

We want this power, but not all the time! KISS.



On abstraction

“The curse of a very powerful and regular language 
is that it provides no barriers against over-
abstraction.” —Martin Odersky 

“The purpose of abstracting is not to be vague, but 
to create a new semantic level in which one can be 
absolutely precise.” —Edsger W. Dĳkstra



Finally, some pithy rules
1. Introduce abstraction when it increases 

precision; when it serves to clarify. 
2. Brevity is not the goal; clarity is. 
3. Rich data structures are overrated. 
4. Consistency, familiarity, and predictability are the 

most important traits of code. Have empathy for 
the user. 

5. Write books; not poems.



Thanks


