
The Evolving Threat of Internet Worms

Jose Nazario, Arbor Networks <jose@arbor.net>

Why Worm Based Intrusions

Relative ease
— “Write once, run everywhere” promise can come true

Penetration
— Right past firewalls via laptops, find the weakest link

Persistence
— Worms keep working so you don’t have to

Coverage
— Attack everything eventually

Why Worms are Successful

 Missing patches
 Rogue access
 Missing access control

Evolution of Worm Threats

Previously, worms were simple clones

Worms have become more complicated systems
— Multi-vector

• Grow your potential target base

— DDoS tool propagation
• Utilize the army of machines

— Dynamic
• Thwart static detection mechanisms

— Counterworms
• Fight back with the same strategy

Multi-vector Worms

Goal is to thwart simple defenses and infect more machines

Code Red vs. Nimda (2001)
— Code Red: one attack vector (IIS)

— Nimda: multiple attack vectors (IIS, mail, IE, open shares)

Sircam (2001)
— Mass mailer, also spread via open shares

Blaster (2003)
— MS-RPC or WebDAV attacks

DDoS Tool Propagation

Use the worm to attack an adversary

Code Red (2001)
— SYN flood against a static IP

Blaster (2003)
— SYN flood against a static domain

— Variants carried a DDoS toolkit

Sapphire, Welchia (2003)
— The worm’s spread is a DDoS

Dynamic Worm Appearances

Try and develop a worm with longevity by evading defenses

Hybris (2000)
— Used alt.comp.virus to spread code updates

Lirva (2003)
— Attempted to download new packages from website

Sobig (2003)
— Contacted website for next set of instructions

Counterworms

Fight the worm with a fast, scalable attack

Code Green (2001)
— Anti-Code Red worm

Cheese (2001)
— Anti-L1on worm

Welchia (2003)
— Anti-Blaster worm

Cause more traffic and problems than they attempt to solve

Worm Authors Are Learning

It’s growing easier to build worms
— Recycle an exploit, automation code, build, launch

Use flexible targeting for DoS attacks

No need to target multiple platforms
— One platform works well enough

Multiple infection vectors lead to longevity
— Nimda still present two years later

Local bias effective at enterprise penetration
— Worms will be carried into the enterprise

— Laptops, VPN connections

Vectors of Control

Current Visibility Control

Classic firewall strategy for the Internet
— Minimally protect the DMZ

— Maximally protect the internal network

DMZ for exposed services
— Control data flow between trusted, untrusted networks

Hardened wall against internal, external networks

Classic Vulnerability Control

Minimized setups on system rollouts
— Construct an image with minimal software

Patch maintenance
— Worms typically attack known holes

Aggressive known vulnerability inventorying
— Regular system inventories, comparisons against vulnerability

databases (e.g. CVE)

Controlling Infectability

Hardened systems
— OS level changes

• Non-executable stack

• Permissions for any subsystem

Hardened applications
— Application configurations

Strengthened configurations
— Services and privileges for any system

Going Beyond the Firewall

Traditional firewall configuration methods
— Decide policy, install filters

— Adjust by reading logs, tweak as needed

— Broken applications or upset users

Informed firewall configurations
— Measure traffic, infer usage

— Determine policy, install policy

Assisted by Peakflow X

Intelligent Risk Assessment

Traditional vulnerability scanners
— Scan for a service, list machines offering that service

— Banner grab, report service type, report potential
vulnerabilities

Usage, policy-aware vulnerability scanners
— Scan for services, compare against usage and policy, report

differences

— Performed by Peakflow X

Combating Worms

Minimize visibility
— Tune access filters to a minimal set

— Externally reachable

— Internally used

Minimize vulnerability
— Track used services

— Identify, remove unused services

— Couple to strong patch management

Detecting Worms

Challenge
— In the face of dynamic behaviors, reliably detect the

presence of a worm

Solution
— Every worm attempts to spread from host to host

— Specific forms of traffic will increase

— Not every host will have sent this traffic before

• Example: web server becoming a web client

Therefore
— Detect the cascading change in host behaviors

Data Gathering for Worm Detection

Blackhole networks
— No background traffic

— Collect attempts from worm trying random hosts

Live enterprise networks
— Traffic and relationship modeling

Live backbone networks
— Interface and topology statistics

— Traffic modeling and analysis

Principles of Correlation Analysis

Two types of correlations to qualify events
— Auto-correlation

• Frequency and sources for any single type of anomaly

• Example: scan frequencies

— Cross-correlation

• Frequency and sources of related anomalies

• Example: scans followed by traffic increases

During worm outbreaks, these frequencies will increase from
a growing number of hosts

Worm Detection by Peakflow X

Uses correlation analysis
— Partially based on an expert system

— Extendable by the user via a filter language

Produces a detailed report
— Pattern of the worm’s behavior

— Hosts matching this pattern

• Dynamically grows

— Amount of traffic caused by the worm

Couple to flow log for additional forensics

Safe Quarantine Interactions

 Control plane interactions
 Specific filters
 Preserve legitimate service

Conclusions

Worm authors are getting smarter
— Worms are getting easier to write, more effective

Worm detection mechanisms are getting more sophisticated
and robust

IDS and firewall mechanisms are advancing to develop worm
defense techniques

