
Hints for Service Oriented
Architectures

Marius Eriksen � @marius
Twitter Inc.



We went from this (circa 2010) &

LB

web web web web

DB cache

queue

workers

(We can talk for a long time about what is
wrong with this architecture; but also about
what is right.)



& to this (circa 2015)

STORAGE & 

RETRIEVAL

LOGICPRESENTATIONROUTING

Redis

Memcache

Flock

T-Bird

MySQLTweet

User

Timeline

Social 
Graph

DMs

API

Web

Monorail

TFE

HTTP Thrift “Stuff”



Problems, circa 2010

� Organizational growth made it difficult to
share the development environment.
Deploys became a major bottleneck.

� Ruby/RoR isn�t well suited for develop
ment by large teams.

� The application was getting prohibitively
expensive to run.

We invested in infrastructure:

� We improved the Ruby runtime: Kiji intro
duced a new garbage collector.

� We put a lot of effort into making deploys
scale well; weed out interfering changes,
etc.

But ultimately, we were working against the
grain; we needed something more drastic.



Why SOAs in the first place?

� Decoupling. They enable independent
development, deployment, operations.
Individual teams can move faster; teams
can alter their implementation(s) without
massive coordination (c.f., library
upgrades).

� Independent scaling and distribution.
Expensive parts of the system can be
scaled independently; services can
occupy different failure domains;
resources can be differentially allocated.

� Isolation. Systems are made more robust
for the same reason protected memory
makes systems more robust.



& why not?

It makes everything else more complicated.

� A new model of development and opera
tions (e.g., try to debug an SOA);

� more, new infrastructure;

� a new failure model.

Make sure you�re solving a real problem
before going down this path.



Setting

A datacenter is a really crappy computer;
they:

� have deep memory hierarchies,

� exhibit partial failures,

� have dynamic topologies,

� are heterogeneous,

� are connected via asynchronous net
works,

� make lots of room for operator error,

� and are very complex.

But, they�re what we�ve got. We need to
gain reliability, safety, and efficiency
through software.



Hints

1. The datacenter is your computer

2. Embrace RPC

3. Compute concurrently

4. Multiplex HTTP

5. Define and use SLOs

6. Abstract destinations

7. Measure liberally

8. Profile and trace systems in situ

9. Use and evolve data schemas

10. Delay work

11. Shunt state

12. Hide caches

13. Push complexity down

14. Think end-to-end

15. Expect failure, and fail well

16. Demand less

17. Beware hot shards and thundering
herds

18. Embrace Conway�s law

19. Deploy changes gradually

20. Keep a tab

21. Plan to deprecate



1. The datacenter is your computer

& and it�s a crappy one.

No more machines! Your unit of deploy
ment is, e.g.,

� a VM;

� a Docker container;

� a statically linked binary (or, in Java, a
JAR file).

The important thing is that the abstraction
does not tie the hands of the
implementor�in this case, the system�s
operator.

Functional units�the computational
basis�should be:

� location independent;

� self-contained;

� replicable.

Use a cluster scheduler (Mesos/Aurora,
Kubernetes, ..)



2. Embrace RPC

RPC has gotten a bad name, for the wrong
reasons.

These articles attack an outdated idea of
RPC, without acknowledging the benefits.
(Of which there are many.)



Most SOAs end up looking like this; it fits
the RPC model very well.

A1 A2 ... An

B1 B2 ... Bn

C1 C2 ... Cn

replica sets

� load balancing

� retry, timeout policies

� higher-level policies (e.g., retrying, time
outs)

� failure accrual

� concurrent programming model

(See Finagle.)



3. Compute concurrently

Concurrent programs wait faster.
�Tony Hoare

Concurrency is the natural way of things in
distributed systems. Wait only where there
is a data dependency.

Your programming model can help.

def querySegment(id: Int, query: String)

: Future[Result]

def search(query: String): Future[Set[Result]] = {

val queries: Seq[Future[Result]] =

for (id <− 0 until NumSegments) yield {

querySegment(id, query)

}

Future.collect(queries) flatMap {

results: Seq[Set[Result]] =>

Future.value(results.flatten.toSet)

}

}



Taking it further with queries.

for {

tweetIds <− timelineIds(User, id)

tweets <− traverse(tweetIds) { id =>

for {

(tweet, sourceTweet) <− TweetyPie.getById(id)

(user, sourceUser) <− Stitch.join(

getByUserId(tweet.userId),

traverse(sourceTweet) { t =>

getByUserId(t.userId) } )

} yield (tweet, user, sourceTweet, sourceUser)

}

} yield (tweets)



4. Multiplex HTTP

An HTTP reverse proxy enables multiplex
ing a single namespace; also:

� Authenticates traffic;

� performs rate limiting;

� sanitizes HTTP;

� maintains traffic stats; etc.

MUX

api login search web

auth

limit

(This was also a crucial piece of our migra
tion puzzle.)



5. Define and use SLOs

Service level objectives define the target
level of service through:

� Latency expectations, e.g., p50, p90,
p99;

� success rates, e.g., ��five nines��;

� throughput, e.g., 10kQPS.

SLOs are part of your API. They also turn
out to be a remarkably good way to parame
terize your systems, and a way to introduce
dynamic control.



6. Abstract destinations

Naming and service discovery takes a front
seat in SOAs. They provide the means to
glue together components. (Just as names
and linkers do in a local model.)

e.g., use ZooKeeper to register host lists;
clients listen to changes, and reconfigure
themselves dynamically.

Must be highly resilient; service discovery is
an end to end problem.



One step further: logical destinations

Wily is a logical naming system that allows
late binding. E.g.,

/s/user

Can bind to whatever makes sense in the
environment.



7. Measure liberally

Metrics are usually your only convenient
view into what�s going on in the world.
Without them you are blind.

Stats.add("request_latency_ms", duration)

% curl http://.../admin/metrics.json
"request_latency_ms": {
"average": 1,
"count": 124909591,
"maximum": 950,
"minimum": 0,
"p50": 1,
"p90": 3,
"p95": 5,
"p99": 19,
"p999": 105,
"p9999": 212,
"sum": 222202958

},



Stats are aggregated across:
� Clusters;

� datacenters; and also

� globally.

avg(ts(AVG, Gizmoduck,

Gizmoduck/request_latency_ms.p{50,90,

99,999}))

Pay special attention to outliers, and look at
distributions.



8. Profile and trace systems in situ

% open http://admin.0.userservice.smf1/



% curl −O http://.../pprof/heap
% pprof heap



% curl −H ’X−Twitter−Trace: 1’ −D − \

http://twitter.com/...

HTTP/1.1 ...

X−Trace−Id: f5e0399fa51b

&

% open http://go/trace/f5e0399fa51b



9. Use and evolve data schemas

By definition, SOAs imply that data crosses
process boundaries. We now need lan
guage agnostic means to serialize data.
Examples include:

� Apache/Facebook Thrift;

� Google�s protocol buffers;

� Apache Avro;

� Microsoft Bond;

� JSON.

Of these, only JSON does not employ sche
mas. This makes it relatively difficult to
evolve, and also foregoes a number of
potential optimizations.



10. Delay work

Much work is delayable; decouple with
queues.

new_tweet

tweets queue

fanout

fanout

fanout

online offline

DB



11. Shunt state

STORAGE & 

RETRIEVAL

LOGICPRESENTATIONROUTING

Redis

Memcache

Flock

T-Bird

MySQLTweet

User

Timeline

Social 
Graph

DMs

API

Web

Monorail

TFE

HTTP Thrift “Stuff”

Only the bottom-most layer here is stateful.

Beware caching; it is an excellent way to
introduce hidden state to your system.



12. Hide caches

Caching is a necessary evil in most systems.
But they are not magical scaling sprinkles
which allow you to easily increase capacity.

They introduce a lot of complexity:

� What�s your invalidation policy?

� Do you know where your writes are?

� What cache-hit rate does your system
require to stay up?

If we instead reframe caching as in−memory
serving frontends then we are forced to
confront these issues, e.g.,

� Should this be integrated with our data
base so that we can extend consistency
guarantees?

� Do we need to replicate the cache also?

At the very least, be very clear about the
operational implications of caching.



13. Push complexity down

Maintain a bottom heavy complexity distri
bution. There is more leverage this way,
and it usually makes for simpler systems on
top.

Examples:

� Storage systems with strong(er) guaran
tees (e.g., HBase vs. Cassandra.);

� ordered, durable queues;

� JVM: JIT, GC.

These help systems compose.



14. Think end−to−end

It�s often the case that an end−to−end solu
tion yields a simpler system. Examples
include:

� Top-level retries;

� unreliable control plane;

� quorum reads/reconciliation.



15. Expect failure, and fail well

resilience, n. The act of resiling, springing
back, or rebounding; as, the resilience of a
ball or of sound.

The systems environment is a hazardous
one; among the things we must tolerate are:

� Process failure;

� overload;

� operator error;

� poor network conditions;

� network partitions.

Systems must be designed for this. They
must fail well.

Balance of MTTF vs. MTTR.

Develop a common toolkit, vocabulary,
patterns.



16. Demand less

Exploit application semantics to demand
less of your systems.

This makes everything simpler, and also
informs how you might degrade gracefully.

e.g., Twitter/Facebook timelines.



17. Beware hot shards and thundering
herds

With scale, it�s very easy to accidentally
overload your own system, often in surpris
ing ways!

Must adopt systems thinking; ��butterfly
effects�� abound.

Admission control, load shedding, and
hot-key caching can help.



18. Embrace Conway’s law

organizations which design systems ...
are constrained to produce designs
which are copies of the communication
structures of these organizations
�M. Conway

This seems to be a universal law. Reverse
it: It�s wise to structure organizations the
way you�d like to structure your software
architecture.



19. Deploy changes gradually

The ways in which your systems interact will
continue to surprise you.

Production changes have a way of teasing
these out, and to surprise you.

Roll things out slowly, and keep things
isolated.

� process canary;

� datacenter canary;

� global.

Use feature flags to do the same at a finer
granularity. These are also very handy to
keep around for emergencies.



20. Keep a tab

In large systems, even simple parts interact
in complex, often unforeseen ways.

It�s important to keep a tab of what�s going
on globally.

� Change management;

� chat rooms;

� consolidated dashboards (spot the corre
lations!).



21. Plan to deprecate

Most systems have a useful lifetime of a few
years. (Maybe 3�5 if you�re lucky.)

How can you deprecate systems? Strict API
boundaries help, but the organization must
also be set up to deal with it.



A few questions to consider

These are a set of common questions which
arise when designing systems in a dis
tributed environment. This is not a com
plete list by any means, but they may be a
useful set of prompts for issues to consider.



Fault tolerance

� What happens when a dependency starts
failing? What if it begins failing slowly?

� How can the system degrade in a grace
ful manner?

� How does the system react to overload?
Is it ��well conditioned?��

� What�s the worst-case scenario for total
failure?

� How quickly can the system recover?

� Is delayable work delayed?

� Is the system as simple as possible?

� How can the system shed load?

� Which failures can be mitigated, and
how?

� Which operations may be retried? Are
they?



Scalability

� How does the system grow? What is the
chief metric with which the system
scales?

� How does the system scale to multiple
datacenters?

� How does demand vary? How do you
ensure the system is always able to han
dle peak loads?

� How much query processing is done? Is it
possible to shape data into queries?

� Is the system replicated?



Operability

� How can features be turned on or off?

� How do you monitor the system? How do
you detect anomalies?

� Does the system have operational needs
specific to the application?

� How do you deploy the system? How do
you deploy in an emergency?

� What are the capacity needs? How does
the system grow?

� How do you configure the system? How
do you configure the system quickly?

� Does the system behave in a predictable
manner? Where are there nonlinearities in
load or failure responses?



Efficiency

� Is it possible to precompute data?

� Are you doing as little work as possible?

� Is the program as concurrent as possible?
(��Concurrent programs wait faster.��)

� Does the system make use of work batch
ing?

� Have you profiled the system? Is it possi
ble to profile in situ?

� Are there opportunities for paralleliza
tion?

� Can you load test the system? How do
you catch performance regressions?



Thanks.

Eriksen, Marius. Your server as a function.
In Proceedings of the Seventh Workshop on
Programming Languages and Operating Sys
tems, p. 5. ACM, 2013.

Hanmer, Robert. Patterns for fault tolerant
software. John Wiley & Sons, 2013.

twitter.github.io/finagle

monkey.org/~marius/redux.html


