
Malware

O n Wednesday, 16 July 2003, Microsoft Security
Bulletin MS03-026 (www.microsoft.com/
security/incident/blast.mspx) announced a
buffer overrun in the Windows Remote Proce-

dure Call (RPC) interface that could let attackers execute
arbitrary code. The flaw, which the Last Stage of Delirium
(LSD) security group initially uncovered (http://lsd
-pl.net/special.html), affected many Windows operating
system versions, including NT 4.0, 2000, and XP.

When the vulnerability was disclosed, no known
public exploit existed, and Microsoft made a patch avail-
able through their Web site. CERT/CC and other secu-
rity organizations issued advisories over the next several
days.1 Almost immediately, discussions of the vulnerabil-
ity began appearing on security lists. By 26 July, HD
Moore had published a working exploit, dcom.c, on the
Full Disclosure mailing list (http://lists.netsys.com/piper
mail/full-disclosure/2003-July/007092.html).

Scattered reports of attackers reusing the exploit
emerged during the next several weeks; then on Monday,
11 August, the first Blaster worm variant struck. Also
known as MSBlast or Lovsan, the worm copied code di-
rectly from the dcom.c exploit, added its own code, and
launched a coordinated denial-of-service (DoS) attack to
exhaust windowsupdate.com’s resources using a Transmis-
sion Control Protocol (TCP) port 80 SYN flood. It also
used the backdoor mechanism from the example exploit
to transfer the worm payload to newly infected systems.

Within its first week, the Blaster worm infected more
than 100,000 Microsoft Windows systems. In spite of
eradication efforts, the Blaster worm was alive and con-
tinued to infect new hosts more than a year later. By using
a wide area network monitoring technique that observes

worm infection
attempts, we col-
lected observations of the Blaster worm during its onset
in August 2003, and in August 2004. This lets us study
worm evolution and provides an excellent illustration of
worms’ four-phase life cycle, lending insight into their la-
tency, growth, decay, and persistence.

How the Blaster worm attacks
The initial Blaster variant’s decompiled source code re-
veals its unique behavior (http://robertgraham.com/
journal/030815-blaster.c). The Blaster worm can be
launched in one of two ways: as the result of a successful
new infection or when a user reboots an already infected
machine. Once launched, the worm immediately starts
the setup for further propagation by choosing an address
from the same local /16 (class B) address as the infected
host. Next, it picks a random number to determine
whether to use the local /16 address it just generated or a
completely random one. The bias is 60 percent toward a
random address. Next, the worm randomly chooses the
offset to determine whether to infect Windows 2000 or
XP, with an 80 percent bias toward XP.

On certain system dates, the initial variant,
Blaster.A, then starts a thread to launch a DoS attack
against windowsupdate.com. It makes no further calls
to the random number generator, but repeatedly seeds
the random number with the number of milliseconds
since boot time. This indicates that the worm author
significantly lacks understanding of random number
generators. Others have discussed the impact of these
poorly seeded random generators.2 The propagation
setup is complete when the worm uses the previously

The Blaster Worm:
Then and Now

24 PUBLISHED BY THE IEEE COMPUTER SOCIETY ■ 1540-7993/05/$20.00 © 2005 IEEE ■ IEEE SECURITY & PRIVACY

The Blaster worm of 2003 infected at least 100,000 Microsoft

Windows systems and cost millions in damage. In spite of

cleanup efforts, an antiworm, and a removal tool from

Microsoft, the worm persists. Observing the worm's activity

can provide inside into the evolution of Internet worms.

MICHAEL

BAILEY, EVAN

COOKE,
FARNAM

JAHANIAN, AND

DAVID WATSON

University of
Michigan

JOSE NAZARIO

Arbor
Networks

Malware

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 25

generated starting address and exploit offset to attempt
to infect 20 sequential addresses using 20 threads on
TCP port 135. It repeats the target infection attempt on
the next 20 sequential addresses, indefinitely scanning
IPv4 space in sequential order. If a connection attempt
to TCP port 135 is successful, the worm sends an RPC
bind command and an RPC request command con-
taining the buffer overflow and exploit code. The ex-
ploit opens a backdoor on TCP port 4444, which waits
for further commands. The infecting system then issues
a command to the newly infected system to transfer the
worm binary using Trivial File Transfer Protocol
(TFTP) on UDP port 69 from the infecting system and
execute it.

Numerous Blaster variants—as well as several new
families of worms that exploit the same initial RPC vul-
nerability—have appeared since its release, many of them
emerging within a few weeks of Blaster. Perhaps the two
most notable are the Welchia (http://securityresponse.
symantec.com/avcenter/venc/data/w32.welchia.worm
.html) and SDBot (http://securityresponse.symantec.
com/avcenter/venc/data/w32.randex.e.html) worms.
Welchia, or Nachi as it’s sometimes called, was an anti-
worm3 that attempted to patch the vulnerability and
ended up causing significant damage of its own. SDBot
was notable in that it used the same RPC vulnerability to
install the SDBot kit, which creates a backdoor on the
system that enables remote control of the infected system
through Internet Relay Chat (IRC).

The Blaster worm’s impact wasn’t limited to a short
period in August 2003. A published survey of 19 research
universities showed that each spent an average of
US$299,579 during a five-week period to recover from
the Blaster worm and its variants.4 The cost of this cleanup
effort has helped solidify a growing view of worms not as
acts of Internet vandalism but as serious crimes. Although
the original Blaster.A author was never caught, authors of
several other variants have been apprehended.5,6

Worm measurement infrastructure
We performed measurements of the Blaster worm using
a globally announced but unused /8 (class A) network,
which represents roughly 1/256 of the Internet, or ap-
proximately 16 million addresses. This monitor is itself
part of the Internet Motion Sensor (IMS; http://
ims.eecs.umich.edu), a network of distributed blackhole
sensors that monitor blocks of unused address space. Be-
cause no legitimate hosts exist in an unused address block,
any observed traffic destined for such addresses must be
the result of misconfiguration, backscatter from spoofed
source addresses, or scanning from worms and other net-
work probing. Prefiltering traffic in this way eliminates
many false positives when identifying malicious traffic
and helps us avoid the scaling issues of other monitoring
approaches (for a discussion of such approaches, see the
sidebar on p. xx). This technique goes by several names,
including network telescopes,7 blackholes,8,9 and dark-
nets (www.cymru.com/Darknet/index.html).

The Blaster life cycle
in August 2003
One of the Blaster worm’s more interesting elements is
that it provides an excellent example of a worm life cycle.
Although not all worms follow this cycle in its entirety,
it’s still informative in understanding broad behaviors. A
four-phased worm life cycle consists of latency, growth,
decay, and persistence (see Figure 2).

Latency describes the time period between discov-
ering a vulnerability and observing the appearance of a
worm in the wild. This period might include vulnerabil-
ity publication, patch release, and theoretical or working
exploits. Our measurement infrastructure observed that
after the LSD group released its initial advisory and Mi-
crosoft its advisory and patch, the number of unique hosts
scanning TCP port 135 increased from between four and
10 unique sources per day to between 100 and 300. Ad-
ditionally, we observed several higher activity spikes dur-

Figure 1. A Blaster worm time-line. Although a rapid succession of activity occurs around the worm’s initial release, its
impact continues to be felt well over a year later.

HD Moore
exploit

26 July 2003

Blaster .B
writer

arrested

July 2003
2004 2005

Removal
tool

31 Dec. 2003

MS03-026
16 July 2003

Blaster .B
writer sentenced

80k subnets
still infected
Aug. 2004

August 2003 September 2003

Blaster .A
11 Aug. 2003

Blaster .B
13 Aug. 2003

Welchia
18 Aug. 2003

Malware

ing this period, each correlating to the release of succes-
sive exploit tools from various underground individuals
or groups.

In the growth phase, the worm strikes and begins
to infect the vulnerable population. We often use epi-
demiological models from population growth and biol-
ogy to describe this period, and their application to
random scanning worms is well understood.10–12 Dur-
ing the first few hours of its growth, the Blaster worm
spread exponentially, with a doubling time of approxi-
mately nine minutes. However, as the worm’s preva-
lence increased, this doubling time slowed and our
observations peaked at nearly 15,000 unique IP ad-
dresses scanning TCP port 135 in a single, one-hour
period, with roughly 106,000 unique sources in a 24-
hour period. Reverse Domain Name System (DNS)
lookups for the active hosts during the peak hour of
Blaster’s activity showed a global distribution of hosts
(see Table 1). Upon analyzing the second-level domain
names, we see that the worm’s spread affected several
consumer broadband providers.

The growth phase is followed by a decay phase in
which infected systems are patched or removed from the
network, or organizations deploy policies to minimize
the worm’s impact. Within eight hours of the worm’s ini-
tial outbreak, the number of unique hosts per hour scan-
ning for TCP port 135 against 256 contiguous addresses
began to diminish. Fitting this loss of worm activity to a
simple exponential decay, we calculated a half-life of
roughly 12 hours. This loss of activity continued for ap-
proximately four days.

Finally, most nondestructive worms enter a persis-

tent phase in which a relatively small population of hosts
remain infected. Following the decay phase, the observed
Blaster activity reached a fairly consistent level. Figure 3
shows Blaster activity in late August 2003 compared to
activity one year later. The initial growth in observations
in August 2003 correlates with the Welchia worm’s ap-
pearance on 18 August. The last two days represent the
steady state seen for the next several months.

The Blaster worm a year later
The Blaster worm was released almost two years ago, pro-
viding ample opportunity for individuals and organiza-
tions to clean up infected machines. We might thus expect
the worm to decay quickly, with only a handful of hosts still
infected in August, 2004. In reality, a year later the Blaster
worm was not only still scanning the Internet, but the re-
maining infected population was larger than expected.

We performed observations for two months starting
in August 2004 and discovered more than 200,000
unique IP addresses scanning our dark address monitor,
with peaks of 4,100 unique addresses per day, and 500 per
hour. Although the effects of the Dynamic Host Config-
uration Protocol (DHCP) can lead to overcounting,10

other effects, such as the Blaster worm’s slow scanning
rate and a host’s short daily operational lifetime, might
lead to undercounting when we consider only daily or
hourly values. To evaluate the effects of DHCP over-
counting, we analyzed the number of unique subnets.
We did this by evaluating only the first 24 bits of an ob-
served IP address, assuming that most DHCP-assigned
addresses are from a small pool of IP addresses in the local
subnet. This analysis showed roughly 90,000 unique
sunbnets during the two-month period (August and
September 2004), suggesting a significant number of
unique infected hosts.

The activity in both the 2003 and 2004 observations
displays a circadian pattern, with peak activity occurring
near midday in the eastern US (see Figure 3). Closer in-
spection shows that, on average, Monday sees the most
traffic and Saturday the least. Additionally, the peak activ-
ity typically occurs between 10:00 and 15:00 GMT,
which roughly correspond to working hours in the east-
ern US and suggests that the infected systems are power
cycled every day as workers and home users turn their
computers on and off.

That many old worms persist is not a new observa-
tion,13 but the huge number of unique hosts still infected
with Blaster is very surprising. Interestingly, Microsoft
released a Blaster removal tool on 6 January 2004 (www.
microsoft.com/presspass/press/2004/feb04/02-24GI
AISpr.asp) that was supposed to remove the worm exe-
cutable and install the patch needed to prevent reinfec-
tion. Although millions of users downloaded this tool,
Blaster observations for January 2004 changed very little,
suggesting that it had little effect on the infected popula-

26 IEEE SECURITY & PRIVACY ■ JULY/AUGUST 2005

Figure 2. The Blaster worm life cycle. The four phases shown include
the end of the latency phase, its growth phase, its decay phase, and
the beginning of its persistence phase.

10-8-2003 12-8-2003 14-8-2003 16-8-2003 18-8-2003
Date

0

5,000

10,000

15,000

Bl
as

te
r

ac
tiv

ity
 p

er
 h

ou
r

(u
ni

q
ue

 IP
s)

Growth
Decay
Persistance

Latency

Malware

tion at large. Simply put, these persistent infections are
due to people who either don’t know or don’t care
enough that their machines are infected.

One way to gain insight into the Blaster’s persistence is
to compare the infected population observed during the
outbreak with the infected population one year later.
Looking first at reverse DNS data, we find that the two
populations have similar demographics (see Table 1). A
comparison of the number of US-based infections during
the outbreak with its persistent population shows them to
both to be roughly 55 percent. Overall, the top-level do-
main distribution across countries changed very little be-
tween outbreak and persistence. The number of infected
systems in different countries appears to have remained
relatively stable. However, the actual addresses have
changed dramatically: 99.5 percent of persistent addresses
aren’t found in the outbreak population and vice versa.

We also compared the identified Blaster populations
from August 2003, and August 2004 and tried to account
for DHCP effects. It is possible that several infected hosts
simply moved within the same LAN due to DHCP or
other administrative decisions, so again we compared only
the first 24 bits of the host IP addresses. We found that 73
percent of the persistent addresses aren’t found in the out-
break population and 85 percent of outbreak addresses
aren’t found the persistent population. Thus, a very signif-
icant movement exists between subnets. As a final test, we
performed the same analysis comparing only the first 16
bits of the addresses and masking out the last 16. The re-
sults showed that 37 percent of persistent addresses aren’t
found in the outbreak population and 21 percent of out-
break addresses aren’t found in the persistent population.
Hence, a substantial churn still exists in the infected net-
works between the outbreak and infected populations.

O ur observations indicate that the Blaster worm isn’t
going away anytime soon. Recent tools targeted at

eradicating it appear to have had little effect on the global
population. Additionally, when we analyze the persistent
population, we see that the infection appears to have suc-
cessfully transitioned to new hosts as the original systems
are cleaned or shut off, suggesting that the Blaster worm,
and other similar worms, will remain significant Internet
threats for many years after their initial release.

Acknowledgments
This work was supported by the Department of Homeland Security
(DHS) under contract number NBCHC040146, the Advanced Re-
search and Development Activity (ARDA) under contract number
NBCHC030104, and by a corporate gift from Intel Corporation. We
thank all the IMS participants for their help and suggestions. We also
thank Dug Song, Robert Stone, and G. Robert Malan of Arbor Net-
works and Larry Blunk, Bert Rossi, and Manish Karir at Merit Net-
work for their assistance and support. We thank Johannes Ulrich from

the SANS Internet Storm Center for sharing DShield data for compar-
ison. Finally, we thank the anonymous reviewers for their corrections
and helpful comments.

References
1. CERT Coordination Center, CERT Advisory CA-

2003-20 W32/Blaster worm, August 2003; www.cert.
org/advisories/CA-2003-20.html.

2. E. Cooke, Z.M. Mao, and F. Jahanian, Worm Hotspots:
Explaining Non-uniformity in Worm Targeting Behavior, tech.
report CSE-TR-503-04, Dept. of Electrical Eng. and

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 27

Figure 3. Unique Blaster hosts per hour. We measured this for late
August 2003 and for the same period in 2004. Although the magni-
tude of the persistent population is less, the pattern that emerges in
late August 2003 is still evident in August 2004.

2003
2004

19
 A

ug
.

20
 A

ug
.

21
 A

ug
.

23
 A

ug
.

22
 A

ug
.

24
 A

ug
.

25
 A

ug
.

26
 A

ug
.

27
 A

ug
.

28
 A

ug
.

29
 A

ug
.

30
 A

ug
.

31
 A

ug
.

1
Se

pt
.

0

500

1,000

1,500

2,000

2,500

3,000

y-
A

xi
s

tit
le

Date

later.*

TLD AUGUST 2003 (%) AUGUST 2004 (%)

net 39.3 34.2

com 15.4 19.6

jp 3.8 7.7

fr 3.1 2.1

ca 1.8 1.3

de 1.7 5.3

br 1.5 2.0

it 1.2 3.5

au 1.2 0.0

edu 1.1 0.1

*Roughly 40 percent of the addresses had reverse Domain Name System entries.

Table 1. Top-level domain (TLD) analysis
of unique source IPson 11 August 2003 and one year

Malware

Computer Science, Univ. of Michigan, 2004.
3. F. Castaneda, E. Can Sezer, and J. Xuy, “Worm vs.

Worm: Preliminary Study of an Active Counter-Attack
Mechanism,” Proc. 2004 ACM Workshop Rapid Malcode
(WORM 04), ACM Press, 2004, 83–93.

4. A.L. Foster, “Colleges Brace for the Next Worm,” Chron-
icle of Higher Education, vol. 50, no. 28, 2004, p. A29.

5. K. Peterson, “Blaster Hacker Receives 18-Month Sen-
tence,” Seattle Times, Business and Technology section, 29
Jan. 2005.

6. P. Roberts, “Suspected Blaster-F Author Nabbed,” PC
World, 3 Sept. 2003, www.pcworld.com/news/article/
0,aid,112308,00.asp.

7. D. Moore, G.M. Voelker, and S. Savage, “Inferring Inter-
net Denial-of-Service Activity,” Proc. 10th Usenix Secu-

rity Symp., Usenix, 2001, pp. 9–22.
8. M. Bailey et al., “The Internet Motion Sensor: A Dis-

tributed Global Scoped Internet Threat Monitoring Sys-
tem,” Proc. Network and Distributed System Security Symp.
(NDSS 05), Internet Society, 2005.

9. D. Song, R. Malan, and R. Stone, “A Snapshot of Global
Internet Worm Activity,” Proc. 1st Conf. Computer Secu-
rity Incident Handling and Response, 2002; www.4law.co.
il/Le288.htm.

10. C. Shannon, D. Moore, and J. Brown, “Code-Red: A
Case Study on the Spread and Victims of an Internet
Worm,” Proc. Internet Measurement Workshop (IMW),
ACM Press, 2002, pp. 273–284.

11. S. Staniford, V. Paxson, and N. Weaver, “How to Own
the Internet in Your Spare Time,” Proc. 11th Usenix Secu-

28 IEEE SECURITY & PRIVACY ■ JULY/AUGUST 2005

In contrast to monitoring unused address space—the technique

we used to monitoring the Blaster worm—other approaches to

monitoring worms and other global Internet threats monitor pro-

duction networks with live hosts. In monitoring used networks,

systems can choose to watch traffic directly via fiber taps or span

ports, or watch data abstractions, such as flow records, device

alerts, or logs. Security devices are an important source of these

abstractions; alerts and logs from host-based antivirus programs,

intrusion-detection systems, and firewalls can all help effectively

characterize worms. To achieve the scale required to monitor

broadly scoped threats, systems that use this direct monitoring

approach often aggregate data from tens of thousands of individual

devices into a global view (see http://analyzer.securityfocus.com).

Our observations of Blaster worm activity differ significantly

from Blaster observations performed using other methods. For

example, the Microsoft remove tool saw a completely different

view of Blaster activity. Microsoft reported that this tool helped

clean eight million infected computers in January 2004 (www.

microsoft.com/presspass/press/2004/feb04/02-24GIAISpr.asp).

The maximum number of unique hosts per day we measured was

106,000. To understand these differences, we compared the

observations from our network monitor to data collected from

DShield (www.dshield.org). The DShield approach to network

monitoring aggregates information from tens of thousands of indi-

vidual security devices throughout the network. During Blaster’s

onset, DShield saw a maximum number of 208,000 unique IP

addresses scanning TCP port 135. Prior to the initial Blaster worm

attack, DShield saw roughly 7,000 unique IP address scanning this

port. Although these two methods saw roughly the same order of

infections, these numbers differ significantly from the values

Microsoft reported.

To explore where these differences might have come from, we

examined the distribution of the source IP addresses from both our

unused network monitor and the DShield data. By examining a

routing table from 11 August 2003, just before the worm’s onset,

we were able to calculate the number of network blocks in each

region of the IPv4 space and determined which networks had

infected hosts visible to each technique. Figure A shows the result

of this analysis. The horizontal axis in the figure ranges from 0 to

255, showing each of the 256 possible first octets in IPv4 space.

The vertical axis shows the proportion of Blaster observations made

using each method for each advertised address block. Although the

unused address monitoring and firewall logs show similar visibility

in the networking space, neither technique saw infection attempts

from nearly 95 percent of the routed networks. Whether the lack of

observations from these blocks is the result of some policy deployed

at these networks, an artifact of worm propagation, or the distri-

bution of the vulnerable hosts is unknown. Understanding the dif-

ferences between these two perspectives of the vulnerable

population remains an interesting research problem.

50 100 150 200 2500

0.2

0.4

0.6

0.8

1.0
Telescope
Enterprise
Both
Neither

y-
A

xi
s

x-Axis

Figure A. The percentage of routed networks with Blaster
activity recorded by two different network monitoring
techniques.

Worm monitoring techniques

Malware

www.computer.org/security/ ■ IEEE SECURITY & PRIVACY 29

rity Symp., Usenix, 2002 149–167.
12. C. Changchun et al., “Monitoring and Early Warning

for Internet Worms,” Proc. 10th ACM Conf. Computer and
Comm. Security, ACM Press, 2003, pp 190–199.

13. D. Song, R. Malan, and R. Stone, A Snapshot of Global
Internet Worm Activity, tech. report, Arbor Network,
June 2002.

Michael Bailey is a graduate student and program manager at
the University of Michigan, and a former director of engineer-
ing at Arbor Networks. His research interests include the secu-
rity and availability of complex distributed systems. Bailey has
a BS in computer science from the University of Illinois at Urbana
and an MS in computer science from DePaul University. Contact
him at mibailey@umich.edu.

Evan Cooke is a PhD candidate at the University of Michigan
and a lead researcher on the Internet Motion Sensor (IMS) pro-
ject. His research interests include network security, large-scale
Internet measurement, and distributed systems. Cooke has a
BS electrical engineering, computer science, and psychology
from the University of Wisconsin and an MS in computer sci-
ence from the University of Michigan. Contact him at
emcooke@umich.edu.

Farnam Jahanian is a professor of electrical engineering and
computer science at the University of Michigan and cofounder
of Arbor Networks. His research interests include distributed
computing, network security, and network architectures. Jahan-
ian has an MS and a PhD in computer science from the Uni-
versity of Texas at Austin. Contact him at farnam@umich.edu.

David Watson is a postdoctoral research fellow at the Univer-
sity of Michigan. His research interests include network routing
protocols and network infrastructure security Watson has a BS
in computer science from Carnegie Mellon University, and an
MSE and PhD in computer science from the University of Michi-
gan. Contact him at dwatson@umich.edu.

Jose Nazario is a software and security engineer at Arbor Net-
works. His research interests include worm detection techniques,
DDoS activity, and large-scale Internet measurements. Nazario
has a BA in biology from Luther College and a PhD in biochem-
istry from Case Western Reserve University. He is the author of
Defense and Detection Strategies Against Internet Worms
(Artech House, 2003). Contact him at jose@arbor.net.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 1.8)
 /CalRGBProfile (Apple RGB)
 /CalCMYKProfile (U.S. Sheetfed Uncoated v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo false
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName <FEFF0068007400740070003a002f002f007700770077002e0063006f006c006f0072002e006f00720067ffff>
 /PDFXTrapped /False

 /Description <<
 /ENU <FEFF0049004500450045002000580070006c006f0072006500200073007000650063007300200066006f0072002000440069007300740069006c006c0065007200200036002e0020004d0056>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

