
Enabling the Prevention of File System Races by

Augmenting Existing Interfaces

Weston A. Adamson, Marius A. Eriksen, David M. Richter

University of Michigan

{muzzle, marius, richterd}@citi.umich.edu

Abstract

Race conditions in file systems occur when a pro-

grammer assumes that file data and metadata are im-

mutable across a series of file system operations, when

in fact there is no mechanism enforcing such a con-

straint. Such race conditions remain a largely-ignored

security issue, yet their impact is certainly non-trivial.

Security researchers have mitigated many common file

system races by modifying existing file system opera-

tions and adding new ones. Though effective, these so-

lutions do not provide any way to prevent arbitrary race

conditions. That is, they do not provide any general-

ized mechanism with which a programmer can protect

file system resources across multiple operations.

We present a general solution to this problem:

fprotect, which is a small extension to the OpenBSD

VFS and the POSIX file system interface. Our func-

tional implementation provides atomicity, consistency,

and isolation guarantees across multiple file system op-

erations by introducing a transactional facility which

restricts access to selected file system objects. We de-

scribe the nature of file system race conditions and

how our system protects against them, investigate av-

enues for integrating our extensions into existing ap-

plications, and present a performance analysis.

1 Introduction

Race conditions in file system operations are widely
acknowledged as a cause of security problems. They
were discussed as early as the 1970s [3] and, as a class
of security vulnerabilities, are known to cause privilege
elevation when successfully exploited.

The execution of many programs depends on meta-
data and data from the file system; consequently,
security-conscious programmers will check file system
conditions before acting upon them. The time between
the checking of a condition and its use is a critical sec-

tion; that is, a period during which a program’s correct

execution depends on the guarantee that some condi-
tion(s) remain invariant. Race conditions occur when
the operating system does not fully enforce consistency
in critical sections.

The generality of the POSIX file system interface
necessitates the use of many fine-grained operations to
perform tasks on file system objects. The interface
guarantees exclusive access to the file system objects
data and metadata for the duration of a single oper-
ation, but has no mechanism to enforce exclusive ac-
cess across multiple operations, and thus cannot ensure
that a file system object remains invariant throughout
a critical section.

Our solution to file system race conditions is to aug-
ment the POSIX file system interface to enable pro-
grammers to demarkate critical sections of operations;
we call this new system fprotect. It guarantees atom-
icity, consistency, and isolation in the specified critical
sections. This provides the programmer with the abil-
ity to carry out a transaction, during which we guar-
antee a coherent and reliable unit of interaction with
a number of file system objects. This approach has an
intuitive appeal, since the programmer knows which
consistency semantics are vital to their application.

Realizing that any interface change is a hard sell,
the primary goals of our work are to make the interface
as simple as possible while maintaining strong security
guarantees. We also aim to provide programmers with
a very simple migration path; applications using our
extensions are well-behaved when mixed with “legacy”
applications that do not use the API, providing the
same strong consistency guarantees.

The threat model that this API attempts to miti-
gate is a lower-privileged adversary achieving privilege
escalation by exploiting some condition of the file sys-
tem in a critical section.

File system races that exploit such a critical section

can typically be categorized as “Time Of Check To
Time Of Use” (TOCTTOU) races [3, 11]. An example
of a TOCTTOU race condition is when a privileged
process calls the access() operation (the “check”) fol-

2
lowed by an open() operation (the “use”), which will
open a file if access() returns successfully. In this
case, an adversary could replace the file with a link to
another file, perhaps critical to the system, thereby ef-
fectively hijacking the privileged open() operation to
open a file of their choice. This “hijacking” would have
to occur between the access() and open() calls, since
the privileged process would be able to notice if it oc-
curred before the access(). TOCTTOU races, such
as this, occur with a variety of other file system oper-
ations as described in more detail in section 2.

largely ignored due to the relative ease of other, per-
haps more expedient, attacks; code injection is a prime
example. As code injection becomes more difficult with
the introduction of systems such as W⊕X [1], Stack-
Guard [7] and PointGuard [8], it is realistic to expect
adversaries to change their focus in the near future.
Additionally, while file system races inherently require
that the attacker already have some amount of access
to the machine in question, this requirement is not at
all far-fetched enough to disqualify them as dangerous
threats. In fact, industry research [16, 14, 5] shows that
the overwhelming majority of unauthorized access and
intrusions, and in particular the most-costly attacks,
involve an “insider” who already has access to the sys-
tem.

Many of the simpler and most common race condi-
tions have been mitigated by altering and adding to
the exploited interfaces. Most of these changes are
pertinent only to single operations and, though some
yield multi-operation consistency, often only in very
limited ways. Policy-driven race condition detection
systems have also been proposed [21], but are limited
by the body of exploit knowledge available at the time.
Policy-driven systems are therefore constantly playing
“catch-up” as new race conditions are discovered.

It is worth noting that our approach facilitates cor-
rect behavior – by allowing the programmer to pro-
tect file system objects – instead of attempting to de-
tect and prevent race conditions dynamically. It has
been shown in the past that simple changes to estab-
lished APIs may provide great benefits to correctness
in code. Specifically, the introduction of the strlcpy()
and strlcat() interfaces to OpenBSD [15, 1] has pro-
vided very visible advantages and has also served as
a case study for adoption by nearly every major open
source operating system.

The rest of this paper is organized as follows: in
section 2 we present examples of common types of race
conditions; in section 3 we describe the design and im-
plementation of our API; in section 4 we examine the
performance of our characteristics of our API; in sec-
tion 6 we describe related work; and in section 7 we

summarize and conclude.

2 Filesystem Race Conditions

access("/tmp/file", W_OK); open("/tmp/file", O_WRITE);

/

etc tmp

passwd file

link("/etc/passwd", "/tmp/file");

victim

adversary

/

etc tmp

passwd file

time

hardlink

Figure 1: A sample TOCTTOU race condition. In the
time between calls to access() and open() by the victim
process, an adversary calls link() , effectively hijacking
the open() call.

Race conditions relating to file system object ac-
cesses are dangers endemic to the majority of current
operating systems. At some level, it seems incongru-
ous that so much effort is spent enforcing process isola-
tion in the address spaces of multiprogrammed environ-
ments when that very isolation fails to carry over into
the file system used by those processes. In some cases,
the application programmer is safe making assump-
tions about their program executing independently of
other elements in the system; in others, great caution
is required. Some specialized domains, like database
management systems, have been forced to confront race
conditions because of the extremely high frequency
with which their data are accessed. The insidious na-
ture of race conditions in general-purpose file systems
stems from the fact that races are normally quite rare,
difficult to exploit, and correspondingly difficult to as-
sess. Despite their usual scarcity, race conditions are
nevertheless dangerous potential exploits which arise
from unfounded assumptions about the atomicity of
grouped file system operations. File system races are
essentially exploited by the same pattern: first, access
to or the existence of some file system object is checked
by the victim; then, an attack is performed via oper-
ation interleaving; last, the victim performs some file
operation that is unsafe because conditions changed af-
ter the check.

3
2.1 File Access

Tsyrklevich [21] describes a trivial case wherein a
setuid program uses access() to check whether a user
has the ability to open a file. If the access() call
succeeds, a subsequent call to open() obtains a file de-
scriptor. The race lies in the fact that both access()

and open() refer to the file in question by its path-
name. There is no guarantee that the pathname refers
to the same inode by the time the setuid program calls
open(); that is, after the access() check, an attacker
could delete the original file and create an identically-
named symlink to a protected resource (see figure 1).
The open() call would then hand the compromised file
to the attacker.

An exploit we discovered assumes a threat model
wherein the attacker already has some administrative
access on the machine in question and seeks to perform
privileged operations covertly (e.g., to avoid indictment
or to frame another privileged user). In OpenBSD,
the vipw command is used to update the password file
safely. Despite that vipw verifies the user’s authoriza-
tion, acquires locks on the files involved, performs con-
sistency checks on the modifications made, and only
thereafter generates a new, secure password database,
it is nevertheless exploitable. After starting up, vipw
creates a child process (a shell interpreter) which also
creates a child process (normally vi), with which the
user edits the password file. After creating its child,
vipw then calls waitpid(), which blocks until vi has
returned.

A vulnerability window exists between the time that
the vi exits and the time that the parent vipw resumes
execution – at which point the password database is
updated if vi exited cleanly. Though the weakness is
obscure, it can be easily exploited by a simple shell
script that waits for a valid user to start vipw, then
waits until the (well-known) temporary file changes,
at which point the script quickly inserts into it a well-
formed password file entry. When vipw resumes, it will
commit the attacker’s entry to the password database,
which in our example creates a new user with arbi-
trary group memberships. Attacks of this sort could
easily go entirely unnoticed, considering that an intru-
sion detection system would find nothing wrong with
the unwitting user legitimately updating the password
file.

2.2 Directory Exploits

A post to the bug-fileutils mailing list [18] describes
how an error in the GNU file utility rm could be used
to delete arbitrary files and directories. The recur-
sive, depth-first file deletion behavior of, e.g., rm -rf

has a race that occurs after the utility has descended
into a given subdirectory (e.g. /tmp/foo/bar) and has
deleted the directory contents. If an attacker is able
to perform an operation like mv /tmp/foo/bar /tmp

just before rm calls chdir("..") to back out of the
now-empty /tmp/foo/bar directory, rm will end up in
/ instead of /tmp/foo. This causes rm, unwittingly,
to attempt to unlink() the contents of the root direc-
tory. This exploit would be disastrous if a privileged
account performed the rm -rf operation. Though this
particular bug has been fixed, it went undiscovered in
the wild for years and countless utilities with recursive
directory-traversal functionality are potentially vulner-
able to the same style of attack.

Bishop [4] relates a different exploit where a privi-
leged process intends to create a directory and change
its owner to a less-privileged user. A race is present af-
ter the completion of mkdir() and before the intended
chown(): assuming an attacker has access to the new
directory, she can delete it and create an identically-
named symlink to a critical file. The privileged process
will then use chown() to grant the critical file to the
attacker.

2.3 Temporary Files

Recent work [9] has been devoted exclusively to com-
bating race conditions centered around the creation of
temporary files. A simple example has the victim test
for a file’s existence (using stat() or access()) and
create it when it is not found. An attacker could ex-
ploit the time between the test and the file creation
by creating a symlink to another file; when the file cre-
ation occurs, the symlink target is overwritten. A twist
on this approach instead uses the symlink to create a
file whose existence is dangerous, e.g. $HOME/.rhosts.
Another variant exploits a victim program that checks
a dummy file to see if the attacker has access privileges;
after the test, the attacker symlinks the dummy file’s
name to a critical file that is then overwritten by the
victim.

2.4 Setuid Scripts

A recent paper [21] explains a problem that early
Unix implementations had with safely executing setuid
shell scripts. If the first two bytes of an executable are
“#!”, the kernel sees the file as a script and will read
the remainder of that line as a path to the script’s
interpreter. In some systems, a race can occur after the
first line is read and before the interpreter is launched.
During this time an attacker has a chance to interpose
a symlink to an alternate script, which the interpreter
would then run with root privileges.

4
struct fprot_obj {

char path[MAXPATHLEN];

int flag;

};

int fprotect(struct fprot_obj *objs, u_int nobjs, int flags, int timeout);

int funprotect(struct fprot_obj *objs, u_int nobjs);

Flags:

FPROT_PARENT locks the parent directory of the specified object

FPROT_PROXY pass the lock by proxy to child process(es)

FPROT_HIDE mark file system object ‘‘invisible’’ to other processes

Figure 2: The fprotect API. A set of objects grouped in an fprotect() call must be grouped in the same set passed
to the corresponding funprotect() call.

3 Design and Implementation

3.1 Interface Design

In order to allow userland programs to demark crit-

ical regions of file system activity, we added two sys-
tem calls to OpenBSD-CURRENT: fprotect() and
funprotect() (Figure 2 shows the API1). These sys-
tem calls manipulate the lockset, a list of file system
objects (“objects”) which are in a critical region, of a
process. Whenever the lockset is nonempty, the process
is in a critical region (“fprotect region”). fprotect()

adds to, and funprotect() subtracts from, the lock-
set. A group of objects added by fprotect() must be
removed in the same group by funprotect().

Whenever an object is in the lockset, the process is
provided with a set of guarantees for that object:

1. Exclusive access. No other process may manip-
ulate the object while it is in the lockset, unless
child processes are explicitly granted proxy-access.

2. Atomicity and Consistency. All changes to the
object are either applied to the object successfully,
or not applied at all.

3. Isolation. Any changes made to objects are not
visible to other processes until the object is re-
moved from the lockset.

With fprotect, objects are referenced by their
pathnames. These pathnames represent the objects
as resolved by those pathnames at the time of the
fprotect() call. Associated with each pathname is
a list of protections applied to that object. A flag is
passed into fprotect() along with this list of paths

1We refer to our system simply as fprotect.

indicating hints and flags that fprotect() can use to
configure and optimize its operations.

The interface also specifies a timeout indicating the
maximum amount of time that should be allowed for
fprotect() to return (this value may set to infinity).
fprotect() may block, since it might need to wait for
exclusive access to a file already exclusively held by
another process.

funprotect() has arguments similar to
fprotect(), only with an inverse effect: path-
names passed to funprotect() will be removed from
the caller’s lockset. If funprotect() is called without
a list of object descriptors, it will remove every object
in the process’s lockset – the list of all objects currently
protected on the behalf of that process.

Note that our API allows for manipulation of the
lockset; that is, the lockset is simply a set of references
to files that are currently under fprotect’s watch.
This means that fprotect() and funprotect() calls
may be nested. This method allows programmers to
specify critical regions over separate file system ob-
jects which may be interleaved, giving a programmer
as much flexibility as possible while still keeping the
interface simple.

When a process exits (normally or abnormally), its
lockset is emptied. Newly-created child processes do
not inherit their parent’s lockset; however, fprotect()
accepts a flag that will grant the caller’s child processes
proxy access to protected objects. In the current im-
plementation, this means that child processes are not
allowed to mutate their parent’s lockset and that the
parent process is responsible for freeing the locks.

5
3.2 Locking System

In order to maintain internal consistency, the
OpenBSD VFS layer enforces exclusive file access for
the duration of a single file system operation (“opera-
tion”). This is done by holding a vnode lock, the pri-

mary vnode lock, on the underlying object being mu-
tated by that particular operation. This lock is ac-
quired through the underlying file system and guar-
antees exclusive access to that object. We extended
this mechanism with the ability to maintain these locks
across several file system operations while still adhering
to the internal consistency semantics in the VFS.

Recall that, under fprotect, every process main-
tains a lockset. The process also maintains a locked
instance of each object in its lockset. By VFS seman-
tics, an object is mutated only when this lock is held.
Thus, by this simple scheme, a process has exclusive
access to all objects in its lockset, even across multiple
operations.

However, a näıve implementation relying on this
scheme of holding primary locks during regions pro-
tected with fprotect has two show-stopping issues.
We circumvent these difficulties by extending the VFS
locking scheme with lock polling and with the introduc-
tion of a secondary vnode lock.

Lock Polling A significant problem with a simple
locking scheme is that if a file f ’s lock is already held
by process p1 when process p2 tries to fprotect() f ,
p2 must sleep while waiting for the lock to be released.
This gives rise to a problem when several file names
are passed to an fprotect() call and all of their locks
need to be acquired as a group. For instance, assume
fprotect() needs to acquire x locks as a group and
y < x of them may be acquired immediately; even
though the first y locks can be acquired without wait-
ing, the next lock requires the calling process to sleep.
If other locks become available during this sleep, the
process has no way to acquire them as they become
available. This can lead to unreasonably long periods
of time during which fprotect() holds some lock(s)
while waiting for another to become available. Note
that all of the time a lock is held within an fprotect()

call is “wasted time”; that is, the calling process can-
not utilize the lock until fprotect() returns control.
Worse, this scheme is inherently deadlock-prone.

To mitigate this problem, we implemented lock

polling in OpenBSD. Lock polling allows the process
to register interest in many locks, then sleep on a
single wait channel which is activated when any of
them become available. Effectively, this allows the
process to wait for many locks at once, never sleep-

ing while waiting for just a single lock to become avail-
able. This solves our first issue and also accommodates
fprotect() timeouts, since whenever a process sleeps
in fprotect() it does so on a single wait channel con-
trolled by fprotect, and thus can be timed-out.

Our lock polling works as follows: when using
fprotect() on a group of files, each descriptor’s path-
name is resolved to a vnode by namei(), after which
fprotect() attempts to lock the vnode with a non-
blocking call. If that call fails, a flag is set on the un-
available vnode, the calling process is added to a wait
channel analogous to those used by poll(2), and the
calling process sleep()s. When the vnode is eventu-
ally unlocked by funprotect(), all processes waiting
on the channel will be awakened, at which point they
resume attempting the lock acquisition.

Secondary Vnode Lock The VFS routines in-
volved in resolving pathnames to vnodes have two char-
acteristics which complicate fprotect’s role: the rou-
tines are invoked very frequently and can only resolve
pathnames without blocking when each component of
the pathname is unlocked. Moreover, these routines
are also used by fprotect. Performing a lookup oper-
ation on a locked file system object would often block
for unreasonably long periods of time. This problem
would likely cascade by triggering the deadlock preven-
tion code (see section 3.6) and causing many operations
to fail when otherwise they would not.

In order to avoid these problems, we implemented
a secondary vnode lock associated with each vnode.
While our system effectively extends the protection
granted by the primary vnode lock from the length of
a single VFS operation to the length of the entire fpro-
tected region, a shorter-duration lock is still needed;
the secondary vnode lock provides this. Its duration is
a single VFS operation, and in this case we use it to
grant temporary, read-only access to a vnode for the
express purpose of performing unimpeded pathname
resolution. More specifically, when an object is in a
lockset, the VFS lookup routines acquire the secondary
lock during the (short-lived) vnode operations. If the
calling process owns the lockset, any subsequent mu-
tating operations it performs will be allowed, since the
caller also holds the primary lock. However, if the call-
ing process is not the owner, the secondary lock will
allow the pathname resolution to proceed quickly, but
any other file system operations will be disallowed be-
cause the primary lock is not held.

It is important to stress that the presence and usage
of the secondary vnode lock does not violate our lock-
set semantics, since the lock is employed only during
one VFS operation and does not confer any mutability

6

stat("file") chmod("file")

stat("file") chmod("file")

fprotect() funprotect()

first lookup()

Normal sequence: file object not fprotected

Fprotected sequence:

primary vnode lock not held

primary vnode lock held

secondary vnode lock not held

secondary vnode lock held

time

second lookup()

Figure 3: A demonstration of the two-tiered locking mechanism. In the normal sequence, the primary lock is acquired
then released by both the stat() and chmod() calls. In the fprotected sequence the primary lock is acquired in
fprotect(), held for the duration of stat() and chmod(), and released in funprotect(). The secondary lock
(fprotected region only) is held for the involved VFS operations: the two lookup() operations called in fprotect()

(as explained in section 3.3), as well as the stat() and chmod() operatations.

rights to the holder. This approach succeeds in al-
lowing processes to safely perform arbitrary pathname
resolution while avoiding the possibility of blocking in-
definitely.

3.3 Name Resolution Consistency

One of the implementation challenges with
fprotect was to avoid race conditions when resolv-
ing pathnames into their corresponding vnodes. In
OpenBSD’s VFS, name lookups are done through
the lookup() routine. In its common use, lookup()
returns the vnode with its primary vnode lock held.
This is done to ensure that no external operation
can change the pathname corresponding to a resolved
vnode before the calling function has a chance to lock
it.

Unfortunately, the fprotect() system call could
not employ this method, because it may be attempting
to lock multiple objects, as described in section 3.2. If
fprotect() did use this method, lock polling would
be impossible, as simply resolving which vnodes were
referenced in the call would (individually) wait for each
primary vnode lock.

Instead, fprotect() calls lookup() with a spe-
cial flag signifying that the vnode should be returned
with its primary vnode lock released. This allows
fprotect() to reference all of the locks on which it
will wait when polling. This method, while necessary,
introduces a vulnerability window during which a vn-
ode’s path could be changed during the lock polling.

This potential inconsistency is mitigated by calling

lookup() again, with the same path, once the original
vnode’s primary lock is held. If this second lookup()

fails or returns a reference to a different vnode, the
primary lock of the “stale” vnode is released, and
fprotect() retries the lock acquisition process from
the first lookup().

3.4 Copy-On-Write for Rollback

In order to provide atomicity – that is, guarantee
that a transaction is either fully completed or effec-
tively never happened – we implemented a rollback
mechanism. Our rollback mechanism provides the
means with which to undo any change made by a pro-
cess to a particular vnode.

Due to the lack of a unified buffer cache in
OpenBSD, we are forced to forego a more elegant im-
plementation: a unified buffer cache would provide
us with a consistent interface to an in-memory cache
of vnode contents. If a vnode is marked for copy-
on-write (CoW), we could simply install a new map-
ping for that process that is backed by the original
mapping. A Write operation causes any affected
pages to be copied from the original mapping and
new, anonymously-backed pages are mapped in to their
places. A unified buffer cache is expected to appear in
OpenBSD 3.6 [22]; in other words, in about a year.

We implement CoW as a (partial) vnode layer that
is stacked above the file system. To provide CoW
for data, we provide alternate versions of the Read

and Write vnode operations. During a transaction, a
Write operation causes the buffer and control struc-

7
tures needed to perform the operation to be copied into
the kernel and added to a linked list associated with the
vnode. We call this a vnode’s write journal.

A Read operation first checks if there is any over-
lap in the requested (offset, length) with any entries in
the journal and, if there is, copies the overlap into the
user buffer. It then fills the remaining holes with the
underlying file system’s Read operation. This is done
in a manner such that the last entry in the journal –
which is to say, the last writer – wins. We maintain
an ordered, non-overlapping list of ranges covered by
the associated journal. Entries in this list refer to the
journal entry which it represents. For any overlapping
ranges in the journal, only the last writer is referred
to by the corresponding range in the ordered list. This
list allows us to perform reads more efficiently, since it
is ordered and maintains last writers: We can simply
walk through the list to find the candidate journal en-
try for any reads with (offset, length) ranges covering
journalled data. Also, the maintenance cost of a write
is minimal, since it simply inserts the range it covers
into the ordered list, splitting up or removing existing
entries which are supersets or subsets, respectively, of
that write.

Due to the plethora of metadata operations and
the fact that most of these only refer to small pieces
of data, we employ a simpler approach. For any
metadata-mutating operation, the underlying file sys-
tem is queried for the metadata and copies it to a
buffer associated with the vnode, unless a copy for this
metadata already exists. A metadata journal is main-
tained separately. We then perform the operation on
the cached copy and append to the metadata journal
an entry describing the operation and its parameters.
An introspective metadata operation will use the CoW
copy of the metadata if it exists, or simply pass the
operation through to the underlying file system if it
does not. Our ability to do this comes from the fact
that the vnode layer is file system-neutral, so we may
operate on common representations of metadata.

When a process calls funprotect(), the journalled
data and metadata are committed. That is, the jour-
nal entries are traversed in order and the file system
operations they describe are performed.

If a failure occurs while the journal is being commit-
ted, the file system may be left in an inconsistent state.
In order to overcome this, we would need file system
support first to perform a set of operations and then
to commit the set as a single unit. Exploration of this
issue is left for future work.

Another concern with our journalling scheme is ex-
cessive memory usage. Journals are not backed by any
storage, and cannot get kicked out by memory pres-

sure. Thus, an avenue for a DoS attack is to perform
operations that cause a lot of metadata journal activ-
ity, thereby exhausting physical resources on the host
computer. We employ a simple scheme of aborting a
transaction if it consumes more than a preset hard limit
of memory. Future work will explore other methods of
avoiding this problem, including rate-limiting and pro-
viding backed memory for the journals.

3.5 Flags and Hints

Another feature of our system is the flags param-
eter that is passed into fprotect(). This allows de-
velopers to specify options such as whether the parent
directory (or any number of parent directories) of a file
system object should be locked by the fprotect() call;
whether child processes can inherit a lock (or an arbi-
trary subset of the parent’s lockset) after a fork();
or whether a non-existent, fprotect()ed file that is
then created becomes visible to the rest of the file sys-
tem at the point of creation or at the point that it is
funprotect()ed. These flags are listed in figure ??.

In demonstrating how our system prevents the vipw
exploit (see section 2.1), we modified vipw so that it
encloses its vulnerability window within a fprotect

transaction. Since vipw fork()s off a child process (a
shell interpreter) that then fork()s off its own child
process (vi), we passed fprotect() a flag that grants
any child (or grandchild, etc) process proxy access to
the locked file system objects. In this manner, vi

is able to write its changes to the password file even
though vipw ultimately holds the lock on it.

3.6 Deadlock Prevention

Another challenge was in finding an efficient and ef-
fective means by which to avoid and/or prevent dead-
lock. In many cases, OpenBSD’s kernel will transpar-
ently handle the scheduling decisions relating to sleep-
ing processes that are waiting for locks. Nevertheless,
some amount of deadlock management is necessary;
therefore, we have integrated a deadlock-prevention
technique borrowed from the database and real-time
processing communities [19, 20, 12, 24] in which di-
rected dependency graphs are used to identify deadlock
conditions.

A deadlock is the result of a process waiting on
another process that is either directly waiting on the
first process, or indirectly waiting on the first process
through other processes.

The deadlock detection system operates by having
each process keep a list of all of the other processes
upon which it is waiting. Before sleeping, a process

8
OS: OpenBSD 3.4-current

CPU: Intel(R) Celeron(TM) CPU 1300MHz ("GenuineIntel" 686-class) 1.31 GHz

MEM: 242307072 (236628K) 133 MHz SDRAM

DISK: wd0 at pciide0 channel 0 drive 0: <QUANTUM FIREBALLlct15 30>

wd0: 16-sector PIO, LBA, 28629MB, 16383 cyl, 16 head, 63 sec, 58633344 sectors

wd0(pciide0:0:0): using PIO mode 4, Ultra-DMA mode 4

Figure 4: The performance test configuration

p checks that each of the processes upon which it de-
pends, either directly or indirectly, is not in turn wait-
ing on it (p). If deadlock is unavoidable, the caller’s
fprotect() invocation returns with an error of type
EDEADLK.

This deadlock detection system is only used on file
system objects that are in an fprotect transaction;
thus, it is only called before waiting on locksets in the
fprotect() call, and in the generic OpenBSD VFS
locking routine when a process is attempting to access
(and thereby acquire the primary vnode lock for) a file
system object that is in a fprotect region of another
process.

3.7 DoS Prevention

An important role of modern operating systems is
providing isolation between processes. The deadlock
detection system described in section 3.6 handles a cer-
tain class of denial of service situations, but does noth-
ing to prevent a process from holding the primary lock
of a filesystem object indefinitely, thereby preventing
all other processes from accessing that object.

This problem could be addressed by imposing a
maximum timeout on transactions, but choosing the
proper maximum timeout is quite difficult. The proper
maximum timeout would vary from system to system,
as it depends on a variety of hardware and software
specific settings that are unique to each configuration.
Accurately imposing a maximum timeout on transac-
tions is an avenue of further research.

Alternatively, optimistic locking could resolve this
issue, as many processes could be in fprotect regions
acting on the same object, operating on their own
shadow copies of the data and meta-data associated
with an object. Then, the only considerations are the
memory usage of keeping the associated shadow copies
and handling merge semantics. Optimistic locking is
discussed in more detail in section 5.

4 Performance

The analysis of the fprotect() and funprotect()

system calls were performed on a clean installation of
OpenBSD-CURRENT (October 13, 2003), running a
generic kernel patched to include the fprotect API.
This ran on the configuration described in figure 4.

4.1 Fprotect System Call

When called, fprotect() must ensure that each
pathname passed as an argument is not already refer-
enced by the state associated with the calling process.
Due to this, the performance of the fprotect() sys-
tem call depends on the number of file system objects
currently held in a transaction in the context of the
calling process.

After this validation stage the system call continues,
acquiring the primary lock for each requested object by
polling the locks, as described in section 3.2. During
this lock polling procedure, prior to sleeping the dead-
lock detection routine is called to check the current
situation for deadlocks.

It is difficult to analyze the lock polling mechanism,
as it is very hard to simulate contention for file sys-
tem objects accurately – system behavior and file sys-
tem access patterns vary widely from system to system.
Analysis of the deadlock detection system is deferred
until section 4.3.

The first time that a process makes an fprotect()

call, it experiences a significant overhead as data struc-
tures for the system are allocated and initialized. With
the test configuration (4), the first time a process called
fprotect(), requesting a lock on one object took 2424
µs, while the next ten calls (each for one object) took
an average of 22.2 µs. We take this value of 22.2 µs
as the baseline cost of a fprotect() call on the test
system.

Figure 5 shows the performance of the fprotect sys-
tem call in relation to the number of active transac-
tions, with one unique file system object passed to each
call. The data is taken as an average of ten runs of the

9

0 250 500 750 1000 1250 1500 1750 2000
Number of active transactions

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

Performance of the fprotect system call
One file system object per transaction

Figure 5: Fprotect() performs optimally when there are less active transactions.

0 250 500 750 1000 1250 1500 1750 2000
Number of file objects in active transactions

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

T
ra

ns
ac

tio
ns

 /
Se

co
nd

1 file system object per call
10 file system objects per call
20 file system objects per call

Performance of the fprotect system call
In relation to the number of file system objects in active transactions

Figure 6: Fprotect() performs optimally when called with relatively few file system object descriptors.

benchmark. This figure shows that the performance of
fprotect() degrades as more unique files are involved
in transactions.

The performance of fprotect() is also negatively
impacted as more file system object descriptors are
passed as parameters to the system call. Figure 6 shows
the performance of the fprotect() system call in rela-
tion to the number of file objects in active transactions,
averaged over ten runs on the testing system. Clearly,
fprotect() performs better under a heavy load when
passed one object than ten or twenty objects per trans-
action.

As transactions have the best chance of success if

they are short in duration, we expect that transactions
will usually operate on few file system objects. There-
fore, the normal behavior of a fprotect() call should
be similar to the behavior with transactions on one file.

4.2 Funprotect System Call

The performance of the funprotect() system call
also depends on the number of objects held in a trans-
action by a process, as it must search for the specified
transaction and ensure that objects are unprotected in
the same sets as they were protected.

Figure 7 shows that the performance of
funprotect(), called with one file system object

10

0 250 500 750 1000 1250 1500 1750 2000
Number of active transactions

0

25000

50000

75000

100000

125000

150000

T
ra

ns
ac

tio
ns

 p
er

 s
ec

on
d

Performance of the funprotect system call
One file system object per transaction

Figure 7: Funprotect() performs optimally when there are less active transactions.

0 250 500 750 1000 1250 1500 1750 2000
Number of file system objects in active transactions

0

5000

10000

15000

20000

25000

30000

C
al

ls
 p

er
 s

ec
on

d

1 file system object per call
10 file system objects per call
20 file system objects per call

Performance of the funprotect system call
Number of parameters in relation to the number of file system objects in active transactions

Figure 8: Funprotect() performs optimally when called with relatively few file system object descriptors.

descriptor as a parameter, in relation to the number of
active transactions held by the process. These results
are averaged over ten runs of the benchmark on the
testing system 4.

Figure 8 shows the performance of funprotect() in
relation to the number of file objects in active trans-
actions, averaged over ten runs on the testing sys-
tem (4). There are some unexpected results with the
funprotect performance; For some reason calls refer-
encing twenty objects perform better than calls refer-
encing ten objects. There is also an odd split in the
data when fprotect() is called with one object per
transaction. We are investigating this odd behavior.

Invocations of funprotect() perform better when

few file system object descriptors are passed as ar-
guments. We expect that the common use of
funprotect(), like fprotect(), to consist of rela-
tively few file system object descriptors as parameters.
Therefore, the performance of funprotect() with one
file per call is representative of the common usage.

4.3 Deadlock Detection System

The deadlock detection routine is called in
fprotect() prior to waiting on a lock, as described
in section 4.1. As discussed in section 3.6, the dead-
lock detection routine makes a set of all processes that
the current process waits on, whether directly or indi-

11

0 50 100 150
Number of Nodes in Dependency Cycle

0

50

100

150

200

T
im

e
(m

ic
ro

se
co

nd
s)

Performance of The
Deadlock Detection System
Baseline Time For The
Fprotect System Call (22.2 ms)

Performance of the deadlock detection system

Figure 9: The performance of the deadlock detection system depends on the number of processes involved in a situation
where deadlock is possible.

rectly, and makes sure that no processes from that set
is waiting on the current process. The system’s per-
formance is dependent on the number of processes in
a dependency cycle – that is, how many processes are
involved in a situation where they are all waiting on
another. In that case, no process can make progress;
they are all deadlocked.

Figure 9 shows the performance of the deadlock de-
tection system in relation to how many processes are
involved in a dependency cycle. Since the deadlock de-
tection is done in an fprotect() call, each of these
data points contains the baseline execution time for
fprotect() of 22.2 µs, in addition to the time spent in
the deadlock detection code. As the figure illustrates,
the performance of this functionality degrades linearly,
demonstrating good scaling characteristics.

When one hundred processes are involved in a de-
pendency cycle that results in a deadlock, the dead-
lock detection system takes 148 µs to determine that
a deadlock will occur (and back out of the offending
fprotect() call. We feel that this is adequate perfor-
mance: we had to increase the per-user process limits
in login.conf to be able to run this benchmark.

5 Future Work

Analysis Tools An interesting avenue of work lies
in the automatic insertion of critical sections. There
are well established static analysis tools which identify

certain classes of potential race conditions in existing
applications [4, 23]. Augmenting such a tool to include
the ability to insert critical section demarkations by
using our interface should be relatively easy.

Additionally, another approach could be taken, uti-
lizing the policies of run-time detection tools [21] to
identify potentially dangerous sequences of file system
operations and add transaction demarkations to them.

Optimistic Locking Currently, the fprotect sys-
tem uses a pessimistic locking strategy; the primary
vnode lock is held from the fprotect() call until the
corresponding funprotect() call. This ensures a pro-
cess exclusive access to an object, as the OpenBSD
VFS layer must acquire this lock before every vnode
operation. An optimistic locking strategy would allow
for more flexibility in the serialization of transactions
to produce more optimal schedules. It would also al-
low us to explore serializable schedules in the context
of our system in order to reduce serialization slack even
further.

Vnode Journalling Our work on copy-on-write
sparked our interest in vnode layer journalling. That
is, a journal describing all operations on a vnode in
terms of vnode operations. We would like to explore
this idea more as a feature provided by the operating
system. For example, allowing applications to imple-
ment “undo” functionality using the file system.

12
6 Related Work

The POSIX interface includes mandatory whole file
or byte-range locks [17], allowing a mindful program-
mer to avoid some race conditions. However, there is
no infrastructure to guarantee consistency of file sys-
tem meta data or operations on directories.

Lowery [11] presents a generic format for TOCT-
TOUs and a broad survey of them in practice. File
system object races, as well as database inconsistencies,
classloader problems, and networked replay attacks are
discussed.

Bishop and Dilger [4] present a formal language de-
scription of file system race conditions and a tool for
static analysis of executables. This tool detects possi-
ble vulnerable situations in sequences of file system op-
erations and can inform the programmer of such events.
This differs from our work, as it is only a resource for
a programmer, not an API extension, and does not
provide a system wide guarantee of consistency. As
mentioned in section 5, we will attempt to augment
this static analysis tool to utilize our interface.

Anguiano [2] implemented a policy-based static
analysis tool that identifies and prevents race condi-
tions of the sort described in section 2.1 and, to a
lesser extent, those in section 2.3. The tool is simi-
lar to Bishop’s and Dilger’s [4], but it overcomes some
implementation difficulties whereby a long call chain
could fool Bishop’s and Dilger’s tool into missing some
race conditions. While Anguiano’s tool performs well
as a compile-time tool, it misses TOCTTOU race con-
ditions that depend on the runtime environment. An-
guiano’s tool is another with which we could conceiv-
ably integrate our solution.

Cowan et al [9] focus solely on temporary file race
conditions with RaceGuard, a Linux kernel enhance-
ment that tracks, prevents, and logs pathological cases.
RaceGuard is efficient, accurate (very few false pos-
itives), and successful within its domain. However,
RaceGuard makes no attempt to solve race conditions
that are not based on temporary files. Also, Race-
Guard heuristically evaluates the window of vulnera-
bility for race conditions – under certain conditions it
will incorrectly assume that a file system object is no
longer at risk for race-induced inconsistencies.

Tsyrklevich and Yee [21] implemented a system in-
tended to handle a broader range of race conditions
than just those based on temporary files, although
the design is not without difficulties. While one can
specify custom policies in configuring their “pseudo-
transactions”, this flexibility is achieved at the ex-
pense of correctness guarantees, given that an a priori

system-wide policy is used. Policy-based approaches

necessarily follow the leading edge of known exploits;
such a reactionary method cannot anticipate future
permutations of the problem.

Another shortcoming of Tsyrklevich’s and Yee’s sys-
tem lies in the fact that, because it is implemented as
a kernel module that intercepts system calls and then
passes them into the kernel, the system actually in-
troduces its own race [10]: there could be a context
switch between the interception of a system call and
the time it is passed into the kernel. The system also
suffers from its heuristic assessment of the duration of
vulnerability to race conditions, which is based solely
on an ad hoc span of time with the system’s load aver-
age loosely included. As with RaceGuard, there is no
definite guarantee of the atomicity of race-prone com-
binations of file system object operations.

The Alpine file system [6] is a networked file sys-
tem that provides transactional guarantees. Alpine is
intended for direct use by applications via an RPC in-
terface, and is not fitted to a generic VFS interface.
This allows Alpine to make fundamental design deci-
sions in favor of transactional operations, whereas our
work focuses on retrofitting an existing production sys-
tem and VFS with the ability to perform transactions.

Other relevant work is found in [20, 12, 24, 13].

7 Summary and Conclusion

File system race conditions are a subtle, dangerous
class of security exploit. They have received relatively
little mainstream attention and, thus, have not yet
been appropriately addressed. Moreover, as success-
ful defenses against popular buffer overflow-based code
injection exploits become more widely adopted, attack-
ers will likely shift their tactics. To confront these race
condition exploits head-on, we present fprotect: a
slight augmentation to OpenBSD’s VFS, as well as a
limited extension to the POSIX file system interface
that allows application programmers to add transac-
tion semantics to their file system operations.

Our system provides atomicity, consistency and iso-

lation over an arbitrary unit of file system operations.
It avoids deadlock, is capable of safely aborting a trans-
action, integrates seamlessly with legacy applications,
and demonstrates good performance characteristics.

Our updated work and re-
lated information is available at
http://www.citi.umich.edu/projects/fprotect.

13
8 Acknowledgements

The authors would like to thank Jason Flinn, Pe-
ter Honeyman, Olga Kornievskaia, Joshua Marker, and
Rick Wash for reviews and suggestions.

References

[1] OpenBSD: The proactively secure Unix-like operating
system. http://www.openbsd.org/.

[2] Ricard Anguiano. A Static Analysis Technique for the
Detection of TOCTTOU Vulnerabilities. Master The-
sis, University of California Davis, 2001.

[3] CR Attanasio. Virtual Machines and Data Security. In
ACM Proceedings of the Workshop on Virtual Com-
puter Systems, 1973.

[4] Matt Bishop and Michael Dilger. Checking for Race
Conditions in File Accesses. Department of Computer
Science, University of California at Davis Technical
Report CSE-95-10, October 1995.

[5] Scott Blake. Protecting the Network Neigh-
borhood. http://www.securitymanagement.com/

library/000833.html, December 2001.

[6] M.R. Brown, K.N. Kolling, and E.A. Taft. The Alpine
file system. ACM Transactions on Computer Systems,
3(4):261–293, November 1985.

[7] Crispan Cowan, Calton Pu, Dave Maier, Jonathan
Walpole, Peat Bakke, Steve Beattie, Aaron Grier,
Perry Wagle, Qian Zhang, and Heather Hinton. Stack-
Guard: Automatic adaptive detection and prevention
of buffer-overflow attacks. In Proc. 7th USENIX Secu-

rity Conference, pages 63–78, San Antonio, Texas, jan
1998.

[8] Crispin Cowan, Steve Beattie, John Johansen, and
Perry Wagle. PointGuard: Protecting pointers from
buffer overflow vulnerabilities. In Proc. 12 USENIX

Security Conference, pages 91–104, Washington DC,
aug 2003.

[9] Crispin Cowan, Steve Beattie, Chris Wright, and Greg
Kroah-Hartman. RaceGuard: Kernel Protection From
Temporary File Race Vulnerabilities. In Proceedings of

the 10th USENIX Security Symposium, August 2001.

[10] Tal Garfinkel. Traps and Pitfalls: Practical Problems
in System Call Interposition Based Security Solutions.
February 2003.

[11] J. Craig Lowery. A Tour of TOCTTOUs. SANS GSEC
practical v.1.4b, August 2002.

[12] K. Akesson M. Tittus. Deadlock Avoidance in Batch
Processes. IFAC World Congress, China, August 1999.

[13] Joshua P. MacDonald. File system support for
application-level transactions. Department of Electri-
cal Engineering and Computer Science, University of
California at Berkeley.

[14] Ronald L. Mendell. Matching Wits Against Bits.
http://www.securitymanagement.com/library/

000675.html, December 2001.

[15] Todd C. Miller and Theo de Raadt. strlcpy and strl-
cat – Consistent, Safe, String Copy and Concatena-
tion. In Proceedings of the 1999 USENIX Technical

Conference, FREENIX track, June 1999.

[16] Kristen Noakes-Fry. Unmasking Social-Engineering
Attacks. http://security2.gartner.com/story.

php.id.38.s.1.jsp, December 2001.

[17] The Institute of Electrical and Inc. Electronics Engi-
neers. IEEE Std 1003.1-1990 (“POSIX”), 1990.

[18] W. Purczynski. rm - recursive directory removal race
condition. bug-fileutils mailing list, March 2002.

[19] Raghu Ramakrishnan and Johannes Gehrke. Database

Management Systems. McGraw-Hill, 2002. http://

www.cs.wisc.edu/~dbbook/.

[20] S. Reveliotis and P. Ferreira. Deadlock avoidance poli-
cies for automated manufacturing cells. IEEE Trans.
on Robotics & Automation, 12:845–857, 1996.

[21] Eugene Tsyrklevich and Bennet Yee. Dynamic Detec-
tion and Prevention of Race Conditions in File Ac-
cesses. In Proceedings of the 12th USENIX Security

Symposium, August 2003.

[22] Ted Unangst. Personal communication.

[23] D. Wheeler. Flawfinder. http://www.dwheeler.com/

flawfinder.

[24] Detlef Zimmer. A Locking Algorithm with Premature
Unlocks. CADLAB at Paderborn, Germany, 1992.

