
Your Server as a Function

Marius Eriksen
Twitter Inc.

marius@twitter.com

Abstract
Building server software in a large-scale setting, where systems ex-
hibit a high degree of concurrency and environmental variability, is
a challenging task to even the most experienced programmer. Ef-
ficiency, safety, and robustness are paramount—goals which have
traditionally conflicted with modularity, reusability, and flexibility.

We describe three abstractions which combine to present a pow-
erful programming model for building safe, modular, and efficient
server software: Composable futures are used to relate concurrent,
asynchronous actions; services and filters are specialized functions
used for the modular composition of our complex server software.

Finally, we discuss our experiences using these abstractions and
techniques throughout Twitter’s serving infrastructure.

Categories and Subject Descriptors D.1.1 [Programming tech-
niques]: Applicative (Functional) Programming; D.1.3 [Program-
ming techniques]: Concurrent Programming; D.1.3 [Program-
ming techniques]: Distributed Programming; C.2.4 [Distributed
Systems]: Client/server; C.2.4 [Distributed Systems]: Distributed
applications; D.3.3 [Programming languages]: Language Con-
structs and Features—Concurrent programming structures

1. Introduction
Servers in a large-scale setting are required to process tens of
thousands, if not hundreds of thousands of requests concurrently;
they need to handle partial failures, adapt to changes in network
conditions, and be tolerant of operator errors. As if that weren’t
enough, harnessing off-the-shelf software requires interfacing with
a heterogeneous set of components, each designed for a different
purpose. These goals are often at odds with creating modular and
reusable software [6].

We present three abstractions around which we structure our
server software at Twitter. They adhere to the style of func-
tional programming—emphasizing immutability, the composition
of first-class functions, and the isolation of side effects—and com-
bine to present a large gain in flexibility, simplicity, ease of reason-
ing, and robustness.

Futures The results of asynchronous operations are represented
by futures which compose to express dependencies between
operations.

[Copyright notice will appear here once ’preprint’ option is removed.]

Services Systems boundaries are represented by asynchronous
functions called services. They provide a symmetric and uni-
form API: the same abstraction represents both clients and
servers.

Filters Application-agnostic concerns (e.g. timeouts, retries, au-
thentication) are encapsulated by filters which compose to build
services from multiple independent modules.

Server operations (e.g. acting on an incoming RPC or a time-
out) are defined in a declarative fashion, relating the results of the
(possibly many) subsequent sub-operations through the use of fu-
ture combinators. Operations are phrased as value transformations,
encouraging the use of immutable data structures and, we believe,
enhancing correctness through simplicity of reasoning.

Operations describe what is computed; execution is handled
separately. This frees the programmer from attending to the minu-
tiae of setting up threads, ensuring pools and queues are sized cor-
rectly, and making sure that resources are properly reclaimed—
these concerns are instead handled by our runtime library, Fina-
gle [10]. Relinquishing the programmer from these responsibilities,
the runtime is free to adapt to the situation at hand. This is used to
exploit thread locality, implement QoS, multiplex network I/O, and
to thread through tracing metadata (à la Google Dapper [20]).

We have deployed this in very large distributed systems with
great success. Indeed, Finagle and its accompanying structuring
idioms are used throughout the entire Twitter service stack—from
frontend web servers to backend data systems.

All of the code examples presented are written in the Scala [17]
programming language, though the abstractions work equally well,
if not as concisely, in our other principal systems language: Java.

2. Futures
A future is a container used to hold the result of an asynchronous
operation such as a network RPC, a timeout, or a disk I/O opera-
tion. A future is either empty—the result is not yet available; suc-
ceeded—the producer has completed and has populated the future
with the result of the operation; or failed—the producer failed, and
the future contains the resulting exception.

An immediately successful future is constructed with Future.
value; an immediately failed future with Future.exception. An
empty future is represented by a Promise, which is a writable
future allowing for at most one state transition, to either of the
nonempty states. Promises are similar to I-structures [4], except
that they embody failed as well as successful computations; they
are rarely used directly.

Futures compose in two ways. First, a future may be defined as
a function of other futures, giving rise to a dependency graph which
is evaluated in the manner of dataflow programming. Second, inde-
pendent futures are executed concurrently by default—execution is
sequenced only where a dependency exists.

Futures are first class values; they are wholly defined in the host
language.

Your Server as a Function (Preprint) 1 2013/9/27

All operations returning futures are expected to be asynchronous,
though this is not enforced.

Dependent composition It is common to sequence two asyn-
chronous operations due to a data dependency. For example, a
search engine frontend, in order to provide personalized search re-
sults, might consult a user service to rewrite queries. Given:

def rewrite(user: String,
query: String): Future[String]

def search(query: String): Future[Set[Result]]

then, to perform our search, we first need to invoke rewrite to
retrieve the personalized query, which is then used as a parameter
to search.

We can phrase this combined operation as a future transfor-
mation: the operation evaluates to the future that represents the
result of rewrite, applied to search. These transformations are
loosely analogous to Unix pipes [18]. With an imagined syntax, we
might write def psearch(user, query) = rewrite(user,
query) | search(); being the placeholder argument for the
result from the “pipe.”

The flatMap combinator performs this kind of transformation:

trait Future[T] {
def flatMap[U](f: T => Future[U]): Future[U]
...

}

(The type T => Future[U] denotes a unary function whose ar-
gument is of type T and whose result is of type Future[U].) Thus
flatMap’s argument is a function which, when the future succeeds,
is invoked to produce the dependent future. flatMap, as with all
future combinators, is asynchronous: it returns immediately with a
future representing the result of the composite operation.

Personalized search is a straightforward application of flatMap:

def psearch(user: String, query: String) =
rewrite(user, query) flatMap { pquery =>
search(pquery)

}

(Scala provides “infix” notation for unary methods; parentheses
around the method argument are omitted, so is the dot for method
dereference. Function literals are introduced with { param =>
expr }.) psearch returns a Future[Set[Result]], thus

val result: Future[Set[Result]] =
psearch("marius", "finagle")

issues the personalized search for “finagle;” result is the future
representing the result of the composed operation.

In this example, flatMap is used to resolve a data dependency
between search and rewrite; psearch merely expresses this,
without specifying an execution strategy.

Handling errors flatMap short-circuits computation when the
outer future fails: the returned future is failed without invoking
the given function to produce a dependent future. Indeed, its type
bears witness to its semantics: when a Future fails, it does not
have a value to present to the function producing the dependent
future. These error semantics are analogous to traditional, stack-
based exception semantics.

It is often useful to recover from such errors, for example in
order to retry an operation, or to provide a fallback value. The
rescue combinator provides this; whereas flatMap operates over
successful results, rescue operates over failures.

trait Future[T] {
...
def rescue[B](

f: PartialFunction[Throwable, Future[B]]
): Future[B]

}

While flatMap demands a total function, rescue accepts partial
functions, allowing the programmer to handle only a subset of pos-
sible errors. For example, we can modify psearch from above to
skip personalization if the query rewriting system fails to complete
within a deadline, so that a degraded result is returned instead of a
failure:

def psearch(user: String, query: String) =
rewrite(user, query).within(50.milliseconds) rescue {

case _: TimeoutError => Future.value(query)
} flatMap { pquery =>

search(pquery)
}

({ case ... is a partial function literal in Scala; it may con-
tain multiple case clauses. within is a method on Future that
returns a new Future which either completes within the given du-
ration, or fails with a timeout error.) If the future returned from
rewrite(..).within(..) fails, and the partial function is de-
fined for the specific failure—in this case, we match on the excep-
tion type TimeoutError—the error is recovered by supplying the
original query value. Since each combinator returns a future rep-
resenting the result of the composite operation, we can chain them
together as in this example. This style is idiomatic.

Composing multiple dependencies Servers commonly perform
“scatter-gather,” or “fan-out” operations. These involve issuing re-
quests to multiple downstream servers and then combining their
results. For example, Twitter’s search engine, Earlybird [5], splits
data across multiple segments; a frontend server answers queries
by issuing requests to a replica of each segment, then combines the
results.

The collect combinator resolves multiple dependencies. For
some value type A, collect converts a sequence of futures into a
future of a sequence of A-typed values:

def collect[A](fs: Seq[Future[A]]): Future[Seq[A]]

(Seq is Scala’s generic container for sequences.) A sketch of a
scatter-gather operation follows. Given a method to query seg-
ments,

def querySegment(id: Int, query: String): Future[Set[Result]]

we use collect to relate multiple dependencies; the search
method from the previous example can thus be defined:

def search(query: String): Future[Set[Result]] = {
val queries: Seq[Future[Result]] =

for (id <- 0 until NumSegments) yield {
querySegment(id, query)

}

collect(queries) flatMap { results: Seq[Set[Result]] =>
Future.value(results.flatten.toSet)

}
}

As with flatMap, errors in any future passed as an argument
to collect propagate immediately to the composed future: should
any of the futures returned by querySegment fail, the collected
future will fail immediately.

Your Server as a Function (Preprint) 2 2013/9/27

rewrite

timeout

search

s₀ s₁ s₂

psearch

Figure 1. The data flow graph between psearch’s constituent
futures.

In combination, invoking psearch returns a future composed
of a number of sub-operations. The resulting dataflow graph is
illustrated in figure 1 (when searching over three segments s0−2).

Recursive composition It is idiomatic to use Future combinators
recursively. Continuing with our previous example, we can search
iteratively until we have a requisite number of results, perhaps by
permuting our query in some way.

def permute(query: String): String

def rsearch(user: String, query: String,
results: Set[Results],
n: Int): Future[Set[Result]] =

if (results.size >= n)
Future.value(results)

else {
val nextQuery = permute(query)
psearch(user, nextQuery) flatMap { newResults =>

if (newResults.size > 0)
rsearch(user, nextQuery,

results ++ newResults, n)
else
Future.value(results)

}
}

The error handling semantics of futures are such that rsearch will
short-circuit and fail should any of its constitutent operations fail.

flatMap merges futures, implementing a form of tail-call elim-
ination: the above example will not produce any space leaks; it is
safe to define recursive relationships of indefinite length.

3. Services and Filters
A service is an asynchronous function, typically representing some
remote endpoint to which RPCs are dispatched; it is distinguished
from a regular function in Scala by enforcing that its return value is
represented by a Future:

type Service[Req, Rep] = Req => Future[Rep]1

Services represent clients and servers symmetrically and are used
by Finagle. Servers implement services to which Finagle dis-
patches incoming requests; Finagle furnishes clients with instances
of Service representing either virtual or concrete remote servers.

For example, this HTTP service dispatches a request to the
Twitter web site, returning a future representing the eventual reply:

val client: Service[HttpReq, HttpRep] =
Http.newService("twitter.com:80")

val f: Future[HttpRep] = client(HttpReq("/"))

An HTTP echo server may be implemented thus:

Http.serve(":80", { req: HttpReq =>
Future.value(HttpRep(Status.OK, req.body))

})

Putting client and server together neatly illustrates the symmetry of
the service abstraction: The following is a primitive HTTP proxy,
forwarding HTTP traffic from the local port 8080 to twitter.com.

Http.serve(":8080",
Http.newService("twitter.com:80"))

Services are used to represent logical application components
like an HTTP server responsible for part of Twitter’s public API,
a Thrift [3] RPC server providing a user authentication service, a
memcached [11] client representing a cluster balanced with consis-
tent hashing [15], etc. However, a number of application agnostic
concerns arise when building server software; these include time-
outs, retry policies, service statistics, and authentication.

Filters implement application-independent functionality; they
are composed with services to modify service behavior. As with
services, filters are simple functions:

type Filter[Req, Rep] =
(Req, Service[Req, Rep]) => Future[Rep]

That is, a filter receives a request and a service with which it is
composed; function application evaluates to a future. It follows that
an identity filter simply defers to the given service:

val identityFilter =
{ (req, service) => service(req) }

A filter that performs request timeout can be implemented thus:

def timeoutFilter(d: Duration) =
{ (req, service) => service(req).within(d) }

1 Read: A Service, parameterized by the types Req and Rep, is a unary
function taking a function parameter of type Req and returning a value of
type Future[Rep]. This is a simplified version of the one implemented
in Finagle, which extends Scala’s Function trait without declaring a type
alias.

Your Server as a Function (Preprint) 3 2013/9/27

Filters provide a combinator, andThen, which is used to com-
bine filters with other filters—producing composite filters—or with
services—producing a new service whose behavior is modified by
the filter.

val httpClient: Service[HttpReq, HttpRep] = ...
val httpClientWithTimeout: Service[HttpReq, HttpRep] =

timeoutFilter(10.seconds) andThen httpClient

Since services are symmetric, filters may be applied to both
clients and servers.

Filters can also transform requests and responses, enabling the
programmer to use the static typing facilities of the programming
language to enforce certain guarantees. For example, an HTTP
server may use a separate request type to indicate authenticated
requests; the method

def authReq(req: HttpReq): Future[AuthHttpReq]

might authenticate the given request via an authentication service,
returning an “upgraded” request on success, failing otherwise. The
filter

val auth: (HttpReq, Service[AuthHttpReq, HttpRes])
=> Future[HttpRep] = {
(req, service) =>

authReq(req) flatMap { authReq =>
service(authReq)

}
}

composes with a service demanding authentication, yielding a new
service to which unauthenticated requests may be dispatched.

val authedService: Service[AuthHttpReq, HttpRep] = ...
val service: Service[HttpReq, HttpRep] =

auth andThen authedService

Thus we can express authentication requirements in static types,
which are in turn enforced by the compiler. This reduces the sur-
face area of authentication mishandling to authReq, providing an
effective, type safe firewall between the components dealing with
unauthenticated and authenticated requests.

4. Discussion
4.1 Declarative programming with futures
The style of declarative programming encouraged by futures forces
the programmer to structure his system as a set of components
whose data dependencies are witnessed by the various future com-
binators. This is a sort of systems description, divorcing the seman-
tics of an operation, which are described by the programmer, from
execution details, handled by Finagle.

This has been enormously beneficial, freeing the programmer
from the tedium of managing threads, queues, resource pools, and
resource reclamation, allowing him instead to focus on application
semantics.

This achieves a kind of modularity as we separate concerns of
program semantics from execution details. We focus our efforts on
efficient execution in Finagle, and indeed employ different execu-
tion strategies for different types of servers. For example, Finagle
can implement thread affinity, so that all I/O belonging to a logical
server request are handled on a single operating system thread, re-
ducing context switching costs. Intriguing opportunities lurk here:
How can we use runtime information to improve execution strate-
gies?

Because Finagle implements the runtime, we were able to add
features like Dapper-style RPC tracing [20] without changing APIs
or otherwise modify any existing user code.

Additionally, the style encourages the programmer to think
about data-flow over control-flow, which in turn tends to lead to
code whose semantics are preserved under non-deterministic con-
current computation: synchronization concerns are subsumed by
the data-flow, as expressed by future combinators. The emphasis on
data-flow encourages the programmer to structure his software in
terms of transformations of immutable values, not as a sequence of
mutations of shared data. We believe this makes it simpler to reason
about shared data, especially in the presence of concurrency. This
is perhaps the principal advantage of Future-based concurrency.

Another, perhaps surprising, benefit is that since future types
are “infectious”—any value derived from a future must itself be
encapsulated with a future—asynchronous behavior is witnessed
by a program’s static types. A programmer can then tell simply by
a method signature whether dispatching it is likely to be expensive.

Futures are cheap in construction and maintenance. Our current
implementation allocates 16 bytes for the central data structure, and
our runtime library multiplexes operations onto several underlying
OS threads, using efficient data structures (for actions like time-
outs), and the operating system I/O multiplexing facilities (for I/O
actions.)

While most of our engineers find the programming model un-
usual, they tend to internalize it quickly.

4.2 Futures in practice
Futures, as presented, are read-only, “pure” constructs: the pro-
ducer of a value is separated from its consumer. This enhances
modularity and makes the program simpler to reason about; how-
ever the real, messy world of distributed systems inevitably com-
plicates matters.

Let’s consider a simple example: timeouts. Imagine an HTTP
client represented by a service to which we apply a timeout filter

val httpClient: Service[HttpReq, HttpRep] =
Http.newService("twitter.com:80")

val timeoutClient: Service[HttpReq, HttpRep] =
timeoutFilter(1.second) andThen httpClient

val result: Future[HttpRep] =
timeoutClient(HttpReq("/"))

If the request fails to complete within 1 second, result fails. How-
ever, futures are read-only: the underlying operation, as initiated by
the HTTP client, is not terminated. This becomes problematic when
connections are scarce, or if the remote server is partitioned from
the network.

The read-only, data-flow semantics of futures seemingly force
consumers of futures to have no knowledge of their producers.
This is good abstraction, but as we’ve seen, it can also introduce
a form of resource leaking. (This is not unlike how languages with
lazy evaluation semantics, such as Haskell [2], may introduce space
leaks.)

We introduced an interrupt mechanism to bridge the gap. In-
terrupts enable consumers of a future to notify the asynchronous
operation responsible for populating it, typically because the result
is no longer needed. Interrupts flow in the opposite direction of the
data carried by futures, and they are advisory. Interrupts don’t di-
rectly change the state of the future, but a producer may act on it.
We added interrupt handling to the bottom-most part of our net-
work clients. In practice, only a handful of places in our code base,
such as our timeout filter, were modified to raise interrupts.

Interrupts also allowed us to implement end-to-end cancella-
tion in all of our servers. First, we added a control message to
our RPC protocol to instruct the server to cancel an in-flight re-
quest. A client, when interrupted, issues this control signal. When
a cancellation signal is received by a server, it raises an interrupt on

Your Server as a Function (Preprint) 4 2013/9/27

the pending future (as returned by the server-supplied Service).
This allows us to interrupt a request in our frontend HTTP server,
canceling all ongoing work on behalf of that request throughout
our distributed systems. As with our tracing system, this was im-
plemented without any API modifications or other changes to user
code.

While interrupts violate the pure data flow model presented by
futures, consumers are still oblivious to their producers. Interrupts
are advisory, and do not directly affect the state of the future.

Interrupts are not without problems. They introduce new seman-
tic complications: Should combinators propagate interrupts to all
futures? Or only the outstanding ones? What if a future is shared
between multiple consumers? We don’t have great answers to these
questions, but in practice interrupts are used rarely, and then almost
exclusively by Finagle; we have not encountered any problems with
their semantics or their implementation.

4.3 Filters
Filters have held their promise of providing clean, orthogonal,
and application-independent functionality. They are used univer-
sally: Finagle itself uses filters heavily; our frontend web servers—
reverse HTTP proxies through which all of our external traffic
flows—use a large stack of filters to implement different aspects
of its responsibilities. This is an excerpt from its current configura-
tion:

recordHandletime andThen
traceRequest andThen
collectJvmStats andThen
parseRequest andThen
logRequest andThen
recordClientStats andThen
sanitize andThen
respondToHealthCheck andThen
applyTrafficControl andThen
virtualHostServer

Filters are used for everything from logging, to request sanitiza-
tion, traffic control, and so on. Filters help enhance modularity
and reusability, and they have also proved valuable for testing. It
is quite simple to unit test each of these filters in isolation—their
interfaces are simple and uniform—without any set up, and with
minimal mocking. Furthermore, they encourage programmers to
separate functionality into independent modules with clean bound-
aries, which generally leads to better design and reuse.

We have also used filters extensively to address lower-level
concerns. For example, we were able to implement a sophisticated
backup request mechanism using a simple filter in about 40 lines
of code (see Appendix A). Engineers at Tumblr, who also use
Finagle, report [16] the use of a low level filter to deduplicate
request streams.

4.4 The cost of abstraction
High level programming languages and constructs do not come
for free. Future combinators allocate new futures on the garbage
collected heap; closures, too, need to be allocated on the heap, since
their invocation is deferred. While we’ve focused on reducing the
allocation footprints—and indeed created many tools for allocation
analysis—it is an ongoing concern.

The tail latencies of most of our servers are governed by minor
heap garbage collections. In isolation, this implies only a small ser-
vice degradation. However our large fan-out system amplifies such
effects as overall request latency is governed by the slowest com-
ponent; with large request distribution—often 100s of systems—
encountering minor garbage collection in the request path is com-
mon. Dean and Barroso [7] describe similar experiences at Google.

A frequent source of unintentional garbage collection pressure
is the ease with which space leaks can be introduced by the in-
advertent capturing of references in closures. This is amplified by
long-lived operations, for example, closures that are tied to lifetime
of a connection, and not of a request. Miller et.al.’s Spores [14]
proposes to mitigate these types of leaks by giving the programmer
fine-grained control over the environment captured by a closure.

In most of our servers, major collections are rare. This gives
rise to another kind of space leak: if a Promise is promoted to
the major heap (for example because the operation it represents
took an unexpectedly long time), its referent value, even if its
useful lifetime is miniscule, survives until the next major garbage
collection.

Development discipline is an important mitigating factor. In
order to ensure that allocation regressions aren’t introduced, we
have developed a tool, JVMGCPROF [9] which runs regularly along
with our tests, providing reports on per-request allocation rates and
lifetimes.

This is an area of ongoing effort with many intriguing possibil-
ities. Since Finagle controls logical-to-physical thread multiplex-
ing and is aware of request boundaries, it can bias allocation. This
opens up the possibility that, with the cooperation of the underlying
JVM, we may make use of region allocation techniques [13].

4.5 Futures, Services, and Filters at Twitter
These techniques are used together with our RPC system [10],
throughout our production runtime systems. Almost all of our mod-
ern server software is implemented in this way, including our fron-
tend serving system, application servers, web crawling systems,
database systems, and fan-out and data maintenance systems. The
systems are employed in a majority of machines across multiple
datacenters.

We’ve found these techniques excel especially in middleware
servers, whose interface is a Service and whose dependencies
are other Services. Such middleware reduces to effectively big
“future transformers”: it’s common to express the entire system in
a declarative fashion.

The advantages of uniformity extend beyond individual server
software. Statistics, tracing data, and other runtime information is
observed with the use of a common set of filters. These in turn
export such runtime information in a uniformly, so that operators
can monitor and diagnose our systems without knowing specifics.

Our offline data processing systems have not yet adopted these
techniques as they are often built on top of other frameworks such
as Hadoop.

5. Related work
Lwt [22] is a cooperative threading library for OCaml whose chief
abstraction, the lightweight thread, is similar to our Future.

Dataflow programming languages [8, 21, 23] also emphasize
dependencies between computations, performing concurrent graph
reduction in their runtimes. However, dataflow concurrency de-
mands determinacy, requiring, among other things, timing inde-
pendence and freedom from nondeterminate errors (most such lan-
guages require freedom from any errors). Thus in its raw form,
dataflow languages are unsuitable for systems programming. Roy
et.al. [19] propose introducing nondeterminate ports to split a
dataflow program into pure (determinate) parts, connected by non-
deterministic channels. This is intriguing, but in systems program-
ming, nearly all concurrency is nondeterministic. (Indeed, you
could argue that deterministic concurrency is better described as
parallelism.)

Haskell [2] and Go [1] provide cheap user-space threads, reduc-
ing the overhead of thread-based concurrency. These runtimes man-
age threads as a cheap resource, and frees the programmer from the

Your Server as a Function (Preprint) 5 2013/9/27

obligation of manually managing threads. However, they are dis-
tinct from futures in two ways. First, they do not provide a clean
data flow model—their threads do not compose as naturally as do
futures. Second, the management of threads is built into their run-
times, and thus limit the amount of runtime specialization that can
be done by a separate library like Finagle [10].

Filters are a special case of the “decorator pattern” [12].

6. Conclusions
We have described an approach to structuring server software by
using futures, services, and filters. Futures are our base abstraction
for expressing the relationships between concurrent, asynchronous
operations. Services and filters are used to structure servers and
clients—they are symmetric—in a modular fashion.

Taken together, these abstractions form an orthogonal basis with
which we construct server software in our demanding environment.
Picking a few, well-thought-out abstractions to form such a ba-
sis has been highly profitable: In addition to making our software
simpler and easier to reason about—services are constructed piece-
meal by composing smaller parts—developers are encouraged to
structure their applications along the same lines. This leads to the
emergence of small, orthogonal, reusable components that com-
pose well—a “software tools” approach to creating server software.
As well, the emphasis on immutability leads to code that is easier
to reason about, and with clearer module boundaries.

Finally, because of the high level of abstraction afforded by fu-
tures, services, and filters, program semantics are (mostly) liberated
from execution mechanics: A separate runtime is implemented by
our RPC system, Finagle, allowing developers to focus on their ap-
plications. Separating the runtime in this way also enhances modu-
larity as code isn’t tied to an execution strategy.

Acknowledgments
This is the work of many. Most of the core abstractions intro-
duced here were designed together with Nick Kallen. Steve Gury,
Arya Asemanfar, Wilhelm Bierbaum, Jeff Smick, Sonja Keserovic,
Ruben Oanta, Rao Fu, David Helder, Jeremy Cloud, Glen Sanford,
Blake Matheny, and Johan Oskarsson have made substantial con-
tributions.

Jake Donham, Marcel Molina, Steve Gury, Jeff Smick, Nathan
Taylor, Ruben Oanta, Berk Demir, Arya Asemanfar, Brian Wick-
man, and Adam Belay provided valuable feedback on this paper.

References
[1] Go. http://www.golang.org.
[2] Haskell. http://www.haskell.org.
[3] A. Agarwal, M. Slee, and M. Kwiatkowski. Thrift: Scalable cross-

language services implementation. Technical report, Facebook, 4
2007.

[4] Arvind, R. S. Nikhil, and K. K. Pingali. I-structures: Data structures
for parallel computing. ACM Trans. Program. Lang. Syst., 11(4):598–
632, Oct. 1989.

[5] M. Busch, K. Gade, B. Larson, P. Lok, S. Luckenbill, and J. Lin. Early-
bird: Real-time search at Twitter. In Proceedings of the 2012 IEEE
28th International Conference on Data Engineering, ICDE ’12, pages
1360–1369, Washington, DC, USA, 2012. IEEE Computer Society.

[6] T. D. Chandra, R. Griesemer, and J. Redstone. Paxos made live: an
engineering perspective. In Proceedings of the twenty-sixth annual
ACM symposium on Principles of distributed computing, PODC ’07,
pages 398–407. ACM, 2007.

[7] J. Dean and L. A. Barroso. The tail at scale. Commun. ACM, 56(2):74–
80, Feb. 2013.

[8] S. Doeraene and P. Van Roy. A new concurrency model for scala based
on a declarative dataflow core. 2013.

[9] M. Eriksen. jvmgcprof. https://github.com/twitter/
jvmgcprof, Nov. 2012.

[10] M. Eriksen and N. Kallen. Finagle. http://twitter.github.com/
finagle, Nov. 2010.

[11] B. Fitzpatrick. Distributed caching with memcached. Linux J.,
2004(124):5–, Aug. 2004.

[12] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design patterns:
elements of reusable object-oriented software. Addison-Wesley Long-
man Publishing Co., Inc., Boston, MA, USA, 1995.

[13] D. R. Hanson. Fast allocation and deallocation of memory based
on object lifetimes. Software: Practice and Experience, 20(1):5–12,
1990.

[14] M. O. Heather Miller and P. Haller. SIP-21 - Spores. http://docs.
scala-lang.org/sips/pending/spores.html, 2013.

[15] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin. Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the World Wide Web. In Pro-
ceedings of the twenty-ninth annual ACM symposium on Theory of
computing, STOC ’97, pages 654–663, New York, NY, USA, 1997.
ACM.

[16] B. Matheny. Eliminating duplicate requests. http:
//tumblr.mobocracy.net/post/45358335655/
eliminating-duplicate-requests, Mar. 2013.

[17] M. Odersky and al. An overview of the Scala programming language.
Technical Report IC/2004/64, EPFL Lausanne, Switzerland, 2004.

[18] D. Ritchie. The evolution of the Unix time-sharing system. In
Proceedings of a Symposium on Language Design and Programming
Methodology, pages 25–36, London, UK, UK, 1980. Springer-Verlag.

[19] P. V. Roy and S. Haridi. Concepts, Techniques, and Models of Com-
puter Programming. MIT Press, Cambridge, MA, USA, 2004.

[20] B. H. Sigelman, L. A. Barroso, M. Burrows, P. Stephenson, M. Plakal,
D. Beaver, S. Jaspan, and C. Shanbhag. Dapper, a large-scale dis-
tributed systems tracing infrastructure. Technical report, Google, Inc.,
2010.

[21] G. Smolka. The Oz programming model. In COMPUTER SCIENCE
TODAY, LECTURE NOTES IN COMPUTER SCIENCE, pages 324–
343. Springer-Verlag, 1995.

[22] J. Vouillon. Lwt: a cooperative thread library. In Proceedings of the
2008 ACM SIGPLAN workshop on ML, ML ’08, pages 3–12, New
York, NY, USA, 2008. ACM.

[23] M. Zissman, G. O’Leary, and D. Johnson. A block diagram compiler
for a digital signal processing mimd computer. In Acoustics, Speech,
and Signal Processing, IEEE International Conference on ICASSP
’87., volume 12, pages 1867–1870, 1987.

Your Server as a Function (Preprint) 6 2013/9/27

A. Backup request filter
class BackupRequestFilter[Req, Rep](

quantile: Int,
range: Duration,
timer: Timer,
statsReceiver: StatsReceiver,
history: Duration,
stopwatch: Stopwatch = Stopwatch

) extends SimpleFilter[Req, Rep] {
require(quantile > 0 && quantile < 100)
require(range < 1.hour)

private[this] val histo = new LatencyHistogram(range, history)
private[this] def cutoff() = histo.quantile(quantile)

private[this] val timeouts = statsReceiver.counter("timeouts")
private[this] val won = statsReceiver.counter("won")
private[this] val lost = statsReceiver.counter("lost")
private[this] val cutoffGauge =
statsReceiver.addGauge("cutoff_ms") { cutoff().inMilliseconds.toFloat }

def apply(req: Req, service: Service[Req, Rep]): Future[Rep] = {
val elapsed = stopwatch.start()
val howlong = cutoff()
val backup = if (howlong == Duration.Zero) Future.never else {

timer.doLater(howlong) {
timeouts.incr()
service(req)

} flatten
}

val orig = service(req)

Future.select(Seq(orig, backup)) flatMap {
case (Return(res), Seq(other)) =>
if (other eq orig) lost.incr() else {

won.incr()
histo.add(elapsed())

}

other.raise(BackupRequestLost)
Future.value(res)

case (Throw(_), Seq(other)) => other
}

}
}

The backup filter issues a secondary request if a response has not arrived from the primary request within a given time, parameterized by the
observed request latency histogram. When a response arrives—the first to arrive satisfy the future returned by Future.select—the other
request is cancelled in order to avoid unnecessary work. (Services furnished by Finagle are load balanced, so that repeated invocations to
service are likely to be dispatched to different physical hosts.)

Your Server as a Function (Preprint) 7 2013/9/27

